Back to Search Start Over

A self-assembling amphiphilic peptide nanoparticle for the efficient entrapment of DNA cargoes up to 100 nucleotides in length.

Authors :
Tarvirdipour S
Schoenenberger CA
Benenson Y
Palivan CG
Source :
Soft matter [Soft Matter] 2020 Feb 12; Vol. 16 (6), pp. 1678-1691.
Publication Year :
2020

Abstract

To overcome the low efficiency and cytotoxicity associated with most non-viral DNA delivery systems we developed a purely peptidic self-assembling system that is able to entrap single- and double-stranded DNA of up to 100 nucleotides in length. (HR)3gT peptide design consists of a hydrophilic domain prone to undergo electrostatic interactions with DNA cargo, and a hydrophobic domain at a ratio that promotes the self-assembly into multi-compartment micellar nanoparticles (MCM-NPs). Self-assembled (HR)3gT MCM-NPs range between 100 to 180 nm which is conducive to a rapid and efficient uptake by cells. (HR)3gT MCM-NPs had no adverse effects on HeLa cell viability. In addition, they exhibit long-term structural stability at 4 °C but at 37 °C, the multi-micellar organization disassembles overtime which demonstrates their thermo-responsiveness. The comparison of (HR)3gT to a shorter, less charged H3gT peptide indicates that the additional arginine residues result in the incorporation of longer DNA segments, an improved DNA entrapment efficiency and an increase cellular uptake. Our unique non-viral system for DNA delivery sets the stage for developing amphiphilic peptide nanoparticles as candidates for future systemic gene delivery.

Details

Language :
English
ISSN :
1744-6848
Volume :
16
Issue :
6
Database :
MEDLINE
Journal :
Soft matter
Publication Type :
Academic Journal
Accession number :
31967171
Full Text :
https://doi.org/10.1039/c9sm01990a