Back to Search Start Over

A network analysis to identify mediators of germline-driven differences in breast cancer prognosis.

Authors :
Escala-Garcia M
Abraham J
Andrulis IL
Anton-Culver H
Arndt V
Ashworth A
Auer PL
Auvinen P
Beckmann MW
Beesley J
Behrens S
Benitez J
Bermisheva M
Blomqvist C
Blot W
Bogdanova NV
Bojesen SE
Bolla MK
Børresen-Dale AL
Brauch H
Brenner H
Brucker SY
Burwinkel B
Caldas C
Canzian F
Chang-Claude J
Chanock SJ
Chin SF
Clarke CL
Couch FJ
Cox A
Cross SS
Czene K
Daly MB
Dennis J
Devilee P
Dunn JA
Dunning AM
Dwek M
Earl HM
Eccles DM
Eliassen AH
Ellberg C
Evans DG
Fasching PA
Figueroa J
Flyger H
Gago-Dominguez M
Gapstur SM
García-Closas M
García-Sáenz JA
Gaudet MM
George A
Giles GG
Goldgar DE
González-Neira A
Grip M
Guénel P
Guo Q
Haiman CA
Håkansson N
Hamann U
Harrington PA
Hiller L
Hooning MJ
Hopper JL
Howell A
Huang CS
Huang G
Hunter DJ
Jakubowska A
John EM
Kaaks R
Kapoor PM
Keeman R
Kitahara CM
Koppert LB
Kraft P
Kristensen VN
Lambrechts D
Le Marchand L
Lejbkowicz F
Lindblom A
Lubiński J
Mannermaa A
Manoochehri M
Manoukian S
Margolin S
Martinez ME
Maurer T
Mavroudis D
Meindl A
Milne RL
Mulligan AM
Neuhausen SL
Nevanlinna H
Newman WG
Olshan AF
Olson JE
Olsson H
Orr N
Peterlongo P
Petridis C
Prentice RL
Presneau N
Punie K
Ramachandran D
Rennert G
Romero A
Sachchithananthan M
Saloustros E
Sawyer EJ
Schmutzler RK
Schwentner L
Scott C
Simard J
Sohn C
Southey MC
Swerdlow AJ
Tamimi RM
Tapper WJ
Teixeira MR
Terry MB
Thorne H
Tollenaar RAEM
Tomlinson I
Troester MA
Truong T
Turnbull C
Vachon CM
van der Kolk LE
Wang Q
Winqvist R
Wolk A
Yang XR
Ziogas A
Pharoah PDP
Hall P
Wessels LFA
Chenevix-Trench G
Bader GD
Dörk T
Easton DF
Canisius S
Schmidt MK
Source :
Nature communications [Nat Commun] 2020 Jan 16; Vol. 11 (1), pp. 312. Date of Electronic Publication: 2020 Jan 16.
Publication Year :
2020

Abstract

Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies ~7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.

Details

Language :
English
ISSN :
2041-1723
Volume :
11
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
31949161
Full Text :
https://doi.org/10.1038/s41467-019-14100-6