Back to Search
Start Over
Driver Drowsiness Estimation by Parallel Linked Time-Domain CNN with Novel Temporal Measures on Eye States.
- Source :
-
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2019 Jul; Vol. 2019, pp. 937-942. - Publication Year :
- 2019
-
Abstract
- This paper presents a vision-based driver drowsiness estimation system from sequences of driver images. We propose a stage-by-stage system instead of an end-to-end system for driver drowsiness estimation. The stage-by-stage system (1) calculates features related to eyes on a frame-by-frame basis, (2) calculates temporal measures on eye states, and (3) estimates drowsiness levels by time-domain convolution with a parallel linked structure. Furthermore, we propose average eye closed time (AECT) and soft percentage of eyelid closure (Soft PERCLOS) as novel temporal measures on eye states to extract information related to driver drowsiness. Extensive experiments have been conducted on a driving movie dataset recorded in a real car. Our system achieves a high accuracy of 95.86% and mean absolute error (MAE) of 0.4007 on the dataset.
- Subjects :
- Automobile Driving
Eye
Eye Movements
Records
Sleep Stages
Wakefulness
Subjects
Details
- Language :
- English
- ISSN :
- 2694-0604
- Volume :
- 2019
- Database :
- MEDLINE
- Journal :
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
- Publication Type :
- Academic Journal
- Accession number :
- 31946048
- Full Text :
- https://doi.org/10.1109/EMBC.2019.8857291