Back to Search Start Over

Modernizing and Expanding the NASA Space Geodesy Network to Meet Future Geodetic Requirements.

Authors :
Merkowitz SM
Bolotin S
Elosegui P
Esper J
Gipson J
Hilliard L
Himwich E
Hoffman ED
Lakins DD
Lamb RC
Lemoine FG
Long JL
McGarry JF
MacMillan DS
Michael BP
Noll C
Pavlis EC
Pearlman MR
Ruszczyk C
Shappirio MD
Stowers DA
Source :
Journal of geodesy [J Geod] 2019 Nov; Vol. 93 (11), pp. 2263-2273.
Publication Year :
2019

Abstract

NASA maintains and operates a global network of Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and Global Navigation Satellite System (GNSS) ground stations as part of the NASA Space Geodesy Program. The NASA Space Geodesy Network (NSGN) provides the geodetic products that support Earth observations and the related science requirements as outlined by the US National Research Council (NRC 2010, 2018). The Global Geodetic Observing System (GGOS) and the NRC have set an ambitious goal of improving the Terrestrial Reference Frame (TRF) to have an accuracy of 1 millimeter and stability of 0.1 millimeters per year, an order of magnitude beyond current capabilities. NASA and its partners within GGOS are addressing this challenge by planning and implementing modern geodetic stations co-located at existing and new sites around the world. In 2013, NASA demonstrated the performance of its next-generation systems at the prototype next-generation core site at NASA's Goddard Geophysical and Astronomical Observatory in Greenbelt, Maryland. Implementation of a new broadband VLBI station in Hawaii was completed in 2016. NASA is currently implementing new VLBI and SLR stations in Texas and is planning the replacement of its other aging domestic and international legacy stations. In this article, we describe critical gaps in the current global network and discuss how the new NSGN will expand the global geodetic coverage and ultimately improve the geodetic products. We also describe the characteristics of a modern NSGN site and the capabilities of the next-generation NASA SLR and VLBI systems. Finally, we outline the plans for efficiently operating the NSGN by centralizing and automating the operations of the new geodetic stations.

Details

Language :
English
ISSN :
0949-7714
Volume :
93
Issue :
11
Database :
MEDLINE
Journal :
Journal of geodesy
Publication Type :
Academic Journal
Accession number :
31920223
Full Text :
https://doi.org/10.1007/s00190-018-1204-5