Back to Search Start Over

Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.

Authors :
Fachal L
Aschard H
Beesley J
Barnes DR
Allen J
Kar S
Pooley KA
Dennis J
Michailidou K
Turman C
Soucy P
Lemaçon A
Lush M
Tyrer JP
Ghoussaini M
Moradi Marjaneh M
Jiang X
Agata S
Aittomäki K
Alonso MR
Andrulis IL
Anton-Culver H
Antonenkova NN
Arason A
Arndt V
Aronson KJ
Arun BK
Auber B
Auer PL
Azzollini J
Balmaña J
Barkardottir RB
Barrowdale D
Beeghly-Fadiel A
Benitez J
Bermisheva M
Białkowska K
Blanco AM
Blomqvist C
Blot W
Bogdanova NV
Bojesen SE
Bolla MK
Bonanni B
Borg A
Bosse K
Brauch H
Brenner H
Briceno I
Brock IW
Brooks-Wilson A
Brüning T
Burwinkel B
Buys SS
Cai Q
Caldés T
Caligo MA
Camp NJ
Campbell I
Canzian F
Carroll JS
Carter BD
Castelao JE
Chiquette J
Christiansen H
Chung WK
Claes KBM
Clarke CL
Collée JM
Cornelissen S
Couch FJ
Cox A
Cross SS
Cybulski C
Czene K
Daly MB
de la Hoya M
Devilee P
Diez O
Ding YC
Dite GS
Domchek SM
Dörk T
Dos-Santos-Silva I
Droit A
Dubois S
Dumont M
Duran M
Durcan L
Dwek M
Eccles DM
Engel C
Eriksson M
Evans DG
Fasching PA
Fletcher O
Floris G
Flyger H
Foretova L
Foulkes WD
Friedman E
Fritschi L
Frost D
Gabrielson M
Gago-Dominguez M
Gambino G
Ganz PA
Gapstur SM
Garber J
García-Sáenz JA
Gaudet MM
Georgoulias V
Giles GG
Glendon G
Godwin AK
Goldberg MS
Goldgar DE
González-Neira A
Tibiletti MG
Greene MH
Grip M
Gronwald J
Grundy A
Guénel P
Hahnen E
Haiman CA
Håkansson N
Hall P
Hamann U
Harrington PA
Hartikainen JM
Hartman M
He W
Healey CS
Heemskerk-Gerritsen BAM
Heyworth J
Hillemanns P
Hogervorst FBL
Hollestelle A
Hooning MJ
Hopper JL
Howell A
Huang G
Hulick PJ
Imyanitov EN
Isaacs C
Iwasaki M
Jager A
Jakimovska M
Jakubowska A
James PA
Janavicius R
Jankowitz RC
John EM
Johnson N
Jones ME
Jukkola-Vuorinen A
Jung A
Kaaks R
Kang D
Kapoor PM
Karlan BY
Keeman R
Kerin MJ
Khusnutdinova E
Kiiski JI
Kirk J
Kitahara CM
Ko YD
Konstantopoulou I
Kosma VM
Koutros S
Kubelka-Sabit K
Kwong A
Kyriacou K
Laitman Y
Lambrechts D
Lee E
Leslie G
Lester J
Lesueur F
Lindblom A
Lo WY
Long J
Lophatananon A
Loud JT
Lubiński J
MacInnis RJ
Maishman T
Makalic E
Mannermaa A
Manoochehri M
Manoukian S
Margolin S
Martinez ME
Matsuo K
Maurer T
Mavroudis D
Mayes R
McGuffog L
McLean C
Mebirouk N
Meindl A
Miller A
Miller N
Montagna M
Moreno F
Muir K
Mulligan AM
Muñoz-Garzon VM
Muranen TA
Narod SA
Nassir R
Nathanson KL
Neuhausen SL
Nevanlinna H
Neven P
Nielsen FC
Nikitina-Zake L
Norman A
Offit K
Olah E
Olopade OI
Olsson H
Orr N
Osorio A
Pankratz VS
Papp J
Park SK
Park-Simon TW
Parsons MT
Paul J
Pedersen IS
Peissel B
Peshkin B
Peterlongo P
Peto J
Plaseska-Karanfilska D
Prajzendanc K
Prentice R
Presneau N
Prokofyeva D
Pujana MA
Pylkäs K
Radice P
Ramus SJ
Rantala J
Rau-Murthy R
Rennert G
Risch HA
Robson M
Romero A
Rossing M
Saloustros E
Sánchez-Herrero E
Sandler DP
Santamariña M
Saunders C
Sawyer EJ
Scheuner MT
Schmidt DF
Schmutzler RK
Schneeweiss A
Schoemaker MJ
Schöttker B
Schürmann P
Scott C
Scott RJ
Senter L
Seynaeve CM
Shah M
Sharma P
Shen CY
Shu XO
Singer CF
Slavin TP
Smichkoska S
Southey MC
Spinelli JJ
Spurdle AB
Stone J
Stoppa-Lyonnet D
Sutter C
Swerdlow AJ
Tamimi RM
Tan YY
Tapper WJ
Taylor JA
Teixeira MR
Tengström M
Teo SH
Terry MB
Teulé A
Thomassen M
Thull DL
Tischkowitz M
Toland AE
Tollenaar RAEM
Tomlinson I
Torres D
Torres-Mejía G
Troester MA
Truong T
Tung N
Tzardi M
Ulmer HU
Vachon CM
van Asperen CJ
van der Kolk LE
van Rensburg EJ
Vega A
Viel A
Vijai J
Vogel MJ
Wang Q
Wappenschmidt B
Weinberg CR
Weitzel JN
Wendt C
Wildiers H
Winqvist R
Wolk A
Wu AH
Yannoukakos D
Zhang Y
Zheng W
Hunter D
Pharoah PDP
Chang-Claude J
García-Closas M
Schmidt MK
Milne RL
Kristensen VN
French JD
Edwards SL
Antoniou AC
Chenevix-Trench G
Simard J
Easton DF
Kraft P
Dunning AM
Source :
Nature genetics [Nat Genet] 2020 Jan; Vol. 52 (1), pp. 56-73. Date of Electronic Publication: 2020 Jan 07.
Publication Year :
2020

Abstract

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.

Details

Language :
English
ISSN :
1546-1718
Volume :
52
Issue :
1
Database :
MEDLINE
Journal :
Nature genetics
Publication Type :
Academic Journal
Accession number :
31911677
Full Text :
https://doi.org/10.1038/s41588-019-0537-1