Back to Search Start Over

Diffuse reflectance infrared Fourier transform (DRIFT) and Mössbauer spectroscopic study of Azospirillum brasilense Sp7: Evidence for intracellular iron(II) oxidation in bacterial biomass upon lyophilisation.

Authors :
Kamnev AA
Tugarova AV
Shchelochkov AG
Kovács K
Kuzmann E
Source :
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy [Spectrochim Acta A Mol Biomol Spectrosc] 2020 Mar 15; Vol. 229, pp. 117970. Date of Electronic Publication: 2019 Dec 18.
Publication Year :
2020

Abstract

Microbial cells are well known to be capable of remaining viable when desiccated, and a variety of beneficial microorganisms can thus be preserved for storage. For the ubiquitous widely studied soil bacterium Azospirillum brasilense (wild-type strain Sp7), which has a significant agrobiotechnological potential owing to its plant-growth-promoting capabilities perspective for its use in biofertilisers, Fourier transform infrared (FTIR) spectroscopy (in the diffuse reflectance mode, DRIFT) was used to control the state of biomass, together with <superscript>57</superscript> Fe transmission Mössbauer spectroscopy to monitor intracellular iron speciation in live rapidly frozen cell suspension and in the lyophilised biomass (both measured at T = 80 K). It has been shown for the first time that a relatively large part of ferrous iron in live cells (22% of the whole cellular iron pool, represented by two high-spin Fe(II) forms, in the 18-h culture grown on <superscript>57</superscript> Fe(III) complex with nitrilotriacetic acid as the sole source of iron) gets largely oxidised upon lyophilisation. The remaining part of iron(II) in the resulting dry biomass was found to be ca. 3% only. The major part of ferric iron in the dry biomass was shown to be comprised of ferritin-like ferric species (giving a typical magnetically split sextet at T = 5 K), while the iron(III) formed from cellular iron(II) by oxidation in air in the course of drying remained in a paramagnetic state even at T = 5 K. The possibility of intracellular iron(II) oxidation to iron(III) upon desiccation may be a specific natural strategy to avoid cell damage caused by Fenton-type reactions in dormant (frozen, dried) cells. The results obtained may have important implications related to iron speciation and redox transformations in dried bacterial preparations intended for long-term storage.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3557
Volume :
229
Database :
MEDLINE
Journal :
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Publication Type :
Academic Journal
Accession number :
31887674
Full Text :
https://doi.org/10.1016/j.saa.2019.117970