Back to Search
Start Over
Identification of a proton sensor that regulates conductance and open time of single hERG channels.
- Source :
-
Scientific reports [Sci Rep] 2019 Dec 27; Vol. 9 (1), pp. 19825. Date of Electronic Publication: 2019 Dec 27. - Publication Year :
- 2019
-
Abstract
- The hERG potassium channel influences ventricular action potential duration. Extracellular acidosis occurs in pathological states including cardiac ischaemia. It reduces the amplitude of hERG current and speeds up deactivation, which can alter cardiac excitability. This study aimed to identify the site of action by which extracellular protons regulate the amplitude of macroscopic hERG current. Recordings of macroscopic and single hERG1a and 1b channel activity, mutagenesis, and the recent cryoEM structure for hERG were employed. Single hERG1a and 1b channels displayed open times that decreased with membrane depolarization, suggestive of a blocking mechanism that senses approximately 20% of the membrane electric field. This mechanism was sensitive to pH; extracellular acidosis reduced both hERG1a and1b channel open time and conductance. The effects of acidosis on macroscopic current amplitude and deactivation displayed different sensitivities to protons. Point mutation of a pair of residues (E575/H578) in the pore turret abolished the acidosis-induced decrease of current amplitude, without affecting the change in current deactivation. In single hERG1a channel recordings, the conductance of the double-mutant channel was unaffected by extracellular acidosis. These findings identify residues in the outer turret of the hERG channel that act as a proton sensor to regulate open time and channel conductance.
- Subjects :
- Acidosis genetics
Acidosis metabolism
Acidosis physiopathology
Algorithms
ERG1 Potassium Channel chemistry
ERG1 Potassium Channel physiology
HEK293 Cells
Humans
Hydrogen-Ion Concentration
Ion Channel Gating physiology
Membrane Potentials genetics
Membrane Potentials physiology
Models, Biological
Models, Molecular
Patch-Clamp Techniques methods
Protein Domains
ERG1 Potassium Channel genetics
Ion Channel Gating genetics
Mutation
Protons
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 9
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 31882846
- Full Text :
- https://doi.org/10.1038/s41598-019-56081-y