Back to Search Start Over

Gene Cloning, Recombinant Expression, Characterization, and Molecular Modeling of the Glycolytic Enzyme Triosephosphate Isomerase from Fusarium oxysporum .

Authors :
Hernández-Ochoa B
Gómez-Manzo S
Alcaraz-Carmona E
Serrano-Posada H
Centeno-Leija S
Arreguin-Espinosa R
Cuevas-Cruz M
González-Valdez A
Mendoza-Espinoza JA
Acosta Ramos M
Cortés-Maldonado L
Montiel-González AM
Pérez de la Cruz V
Rocha-Ramírez LM
Marcial-Quino J
Sierra-Palacios E
Source :
Microorganisms [Microorganisms] 2019 Dec 24; Vol. 8 (1). Date of Electronic Publication: 2019 Dec 24.
Publication Year :
2019

Abstract

Triosephosphate isomerase (TPI) is a glycolysis enzyme, which catalyzes the reversible isomerization between dihydroxyactetone-3-phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). In pathogenic organisms, TPI is essential to obtain the energy used to survive and infect. Fusarium oxisporum (Fox) is a fungus of biotechnological importance due to its pathogenicity in different organisms, that is why the relevance of also biochemically analyzing its TPI, being the first report of its kind in a Fusarium . Moreover, the kinetic characteristics or structural determinants related to its function remain unknown. Here, the Tpi gene from F. oxysporum was isolated, cloned, and overexpressed. The recombinant protein named FoxTPI was purified (97% purity) showing a molecular mass of 27 kDa, with optimal activity at pH 8.0 and and temperature of 37 °C. The values obtained for K <subscript>m</subscript> and V <subscript>max</subscript> using the substrate GAP were 0.47 ± 0.1 mM, and 5331 μmol min <superscript>-1</superscript> mg <superscript>-1</superscript> , respectively. Furthemore, a protein structural modeling showed that FoxTPI has the classical topology of TPIs conserved in other organisms, including the catalytic residues conserved in the active site (Lys12, His94 and Glu164). Finally, when FoxTPI was analyzed with inhibitors, it was found that one of them inhibits its activity, which gives us the perspective of future studies and its potential use against this pathogen.<br />Competing Interests: The authors declare no conflict of interest.

Details

Language :
English
ISSN :
2076-2607
Volume :
8
Issue :
1
Database :
MEDLINE
Journal :
Microorganisms
Publication Type :
Academic Journal
Accession number :
31878282
Full Text :
https://doi.org/10.3390/microorganisms8010040