Back to Search Start Over

Measuring the performance of patient-specific solutions for minimally invasive transforaminal lumbar interbody fusion surgery.

Authors :
Thayaparan GK
Owbridge MG
Linden M
Thompson RG
Lewis PM
D'Urso PS
Source :
Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia [J Clin Neurosci] 2020 Jan; Vol. 71, pp. 43-50. Date of Electronic Publication: 2019 Dec 13.
Publication Year :
2020

Abstract

Pre-surgical planning using 3D-printed BioModels enables the preparation of a "patient-specific" kit to assist instrumented spinal fusion surgery. This approach has the potential to decrease operating time while also offering logistical benefits and cost savings for healthcare. We report our experience with this method in 129 consecutive patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) over 27 months at a single centre and performed by a single surgeon. Patient imaging and surgical planning software were used to manufacture a 3D-printed patient-specific MIS TLIF kit for each patient consisting of a 1:1 scale spine BioModel, stereotactic K-wire guide, osteotomy guide, and retractors. Pre-selected pedicle screws, rods, and cages were sourced and supplied with the patient-specific kit. Additional implants were available on-shelf to address a size discrepancy between the kit implant and intraoperative measurements. Each BioModel was used pre-operatively for surgical planning, patient consent and education. The BioModel was sterilised for intraoperative reference and navigation purposes. Efficiency measures included operating time (153 ± 44 min), sterile tray usage (14 ± 3), fluoroscopy screening time (57.2 ± 23.7 s), operative waste (19 ± 8 L contaminated, 116 ± 30 L uncontaminated), and median hospital stay (4 days). The pre-selected kit implants exactly matched intraoperative measurements for 597/639 pedicle screws, 249/258 rods, and 46/148 cages. Pedicle screw placement accuracy was 97.8% (625/639) on postoperative CT. Complications included one intraoperative dural tear, no blood products administered, and six reoperations. Our experience demonstrates a viable application of patient-specific 3D-printed solutions and provides a benchmark for studies of efficiency in spinal fusion surgery.<br /> (Copyright © 2019 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1532-2653
Volume :
71
Database :
MEDLINE
Journal :
Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
Publication Type :
Academic Journal
Accession number :
31843436
Full Text :
https://doi.org/10.1016/j.jocn.2019.11.008