Back to Search
Start Over
Curing hemophilia A by NHEJ-mediated ectopic F8 insertion in the mouse.
- Source :
-
Genome biology [Genome Biol] 2019 Dec 16; Vol. 20 (1), pp. 276. Date of Electronic Publication: 2019 Dec 16. - Publication Year :
- 2019
-
Abstract
- Background: Hemophilia A, a bleeding disorder resulting from F8 mutations, can only be cured by gene therapy. A promising strategy is CRISPR-Cas9-mediated precise insertion of F8 in hepatocytes at highly expressed gene loci, such as albumin (Alb). Unfortunately, the precise in vivo integration efficiency of a long insert is very low (~ 0.1%).<br />Results: We report that the use of a double-cut donor leads to a 10- to 20-fold increase in liver editing efficiency, thereby completely reconstituting serum F8 activity in a mouse model of hemophilia A after hydrodynamic injection of Cas9-sgAlb and B domain-deleted (BDD) F8 donor plasmids. We find that the integration of a double-cut donor at the Alb locus in mouse liver is mainly through non-homologous end joining (NHEJ)-mediated knock-in. We then target BDDF8 to multiple sites on introns 11 and 13 and find that NHEJ-mediated insertion of BDDF8 restores hemostasis. Finally, using 3 AAV8 vectors to deliver genome editing components, including Cas9, sgRNA, and BDDF8 donor, we observe the same therapeutic effects. A follow-up of 100 mice over 1 year shows no adverse effects.<br />Conclusions: These findings lay the foundation for curing hemophilia A by NHEJ knock-in of BDDF8 at Alb introns after AAV-mediated delivery of editing components.
Details
- Language :
- English
- ISSN :
- 1474-760X
- Volume :
- 20
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Genome biology
- Publication Type :
- Academic Journal
- Accession number :
- 31843008
- Full Text :
- https://doi.org/10.1186/s13059-019-1907-9