Back to Search
Start Over
Appraisal of lignocellusoic biomass degrading potential of three earthworm species using vermireactor mediated with spent mushroom substrate: Compost quality, crystallinity, and microbial community structural analysis.
- Source :
-
The Science of the total environment [Sci Total Environ] 2020 May 10; Vol. 716, pp. 135215. Date of Electronic Publication: 2019 Nov 23. - Publication Year :
- 2020
-
Abstract
- Spent mushroom substrate (SMS) is a recalcitrant lignocellulosic waste. Recycling of SMS through composting has been reported; however, the process is lengthy due to its complex biochemical composition. Although vermitechnology is known for its high efficiency, it has rarely been applied to recycle SMS. In this study, the qualitative value of vermicomposted SMS mediated by three earthworm species (i.e., Eisenia fetida, Eudrilus eugeniae, and Perionyx excavatus) was evaluated on the basis of nutrient availability, microbial activity, phospholipid fatty acid (PLFA) profiles, and seed germination assays. Degradation profiles of the lignocellulosic substrate in the vermireactors were assessed by monitoring the changes in crystallinity and distribution of functional groups using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy, respectively. Total organic carbon decreased by 1.4-3.5 folds with approximately 2.1-2.4 folds increase in nitrogen and phosphorus availability in all vermibeds. Interestingly, pH declined in the Eisenia and Eudrilus systems but increased in the Perionyx-vermibeds. XRD-derived crystallinity index was reduced significantly by 1.37 folds in Perionyx-vermicompost with concurrent microbial enrichment. Further, profuse abundance of vital functional groups (CO, NH, and OH) was clearly observed in the vermicompost with Perionyx followed by that with Eisenia. Moreover, PLFA illustrated significant variations in fatty acid distributions and microbial communities of the three vermicomposting systems. The seed germination assay showed that the germination index and relative root-shoot vigor of Perionyx-vermicompost treated seeds were 1.05-1.30 times greater than those of Eisenia and Eudrilus vermicompost treated ones. The results suggest that SMS degradability was affected by the growth of a healthy microbial community through vermicomposting.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)
- Subjects :
- Animals
Biomass
Soil
Agaricales
Composting
Microbiota
Oligochaeta
Subjects
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 716
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 31837844
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2019.135215