Back to Search
Start Over
Desensitization of NMDA channels requires ligand binding to both GluN1 and GluN2 subunits to constrict the pore beside the activation gate.
- Source :
-
Journal of neurochemistry [J Neurochem] 2020 Jun; Vol. 153 (5), pp. 549-566. Date of Electronic Publication: 2019 Dec 26. - Publication Year :
- 2020
-
Abstract
- N-methyl-D-aspartate (NMDA) receptor channels are activated by glutamate (or NMDA) and glycine. The channels also undergo desensitization, which denotes decreased channel availability, after prolonged exposure to the activating ligands. Glycine apparently has a paradoxical negative effect on desensitization, as the increase in ambient glycine in concentrations required for channel activation would increase sustained NMDA receptor currents. We hypothesized that this classical "glycine-dependent desensitization" could be glycine-dependent activation in essence. By performing electrophysiological recordings and biophysical analyses with rat brain NMDA receptors heterogeneously expressed in Xenopus laevis oocytes, we characterized that the channel opened by "only" NMDA (in nominally glycine-free condition probably with the inevitable nanomolar glycine) would undergo a novel form of deactivation rather than desensitization, and is thus fully available for subsequent activation. Moreover, external tetrapentylammonium ions (TPentA), tetrabutylammonium ions, and tetrapropylammonium ions (TPA, in higher concentrations) block the pore and prohibit channel desensitization with a simple "foot-in-the-door" hindrance effect. TpentA and TPA have the same voltage dependence but show different flow dependence in binding affinity, revealing a common binding site at an electrical distance of ~0.7 from the outside yet differential involvement of the flux-coupling region in the external pore mouth. The smaller tetraethylammonium ion and the larger tetrahexylammonium and tetraheptylammonium ions may block the channel but could not affect desensitization. We conclude that NMDA receptor desensitization requires concomitant binding of both glycine and glutamate, and thus movement of both GluN1 and GluN2 subunits. Desensitization gate itself embodies a highly restricted pore reduction with a physical distance of ~4 Å from the charged nitrogen atom of bound tetraalkylammonium ions, and is located very close to the activation gate in the bundle-crossing region in the external pore vestibule.<br /> (© 2019 International Society for Neurochemistry.)
- Subjects :
- Animals
Dose-Response Relationship, Drug
Excitatory Amino Acid Agonists metabolism
Excitatory Amino Acid Agonists pharmacology
Excitatory Amino Acid Antagonists metabolism
Excitatory Amino Acid Antagonists pharmacology
Female
Glutamic Acid pharmacology
Glycine pharmacology
Ion Channel Gating drug effects
Ligands
Nerve Tissue Proteins agonists
Nerve Tissue Proteins antagonists & inhibitors
Protein Binding drug effects
Protein Binding physiology
Rats
Receptors, N-Methyl-D-Aspartate agonists
Receptors, N-Methyl-D-Aspartate antagonists & inhibitors
Receptors, N-Methyl-D-Aspartate genetics
Xenopus laevis
Glutamic Acid metabolism
Glycine metabolism
Ion Channel Gating physiology
Nerve Tissue Proteins metabolism
Receptors, N-Methyl-D-Aspartate metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1471-4159
- Volume :
- 153
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Journal of neurochemistry
- Publication Type :
- Academic Journal
- Accession number :
- 31821563
- Full Text :
- https://doi.org/10.1111/jnc.14939