Back to Search Start Over

Molybdate pumping into the molybdenum storage protein via an ATP-powered piercing mechanism.

Authors :
Brünle S
Eisinger ML
Poppe J
Mills DJ
Langer JD
Vonck J
Ermler U
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2019 Dec 26; Vol. 116 (52), pp. 26497-26504. Date of Electronic Publication: 2019 Dec 06.
Publication Year :
2019

Abstract

The molybdenum storage protein (MoSto) deposits large amounts of molybdenum as polyoxomolybdate clusters in a heterohexameric (αβ) <subscript>3</subscript> cage-like protein complex under ATP consumption. Here, we suggest a unique mechanism for the ATP-powered molybdate pumping process based on X-ray crystallography, cryoelectron microscopy, hydrogen-deuterium exchange mass spectrometry, and mutational studies of MoSto from Azotobacter vinelandii . First, we show that molybdate, ATP, and Mg <superscript>2+</superscript> consecutively bind into the open ATP-binding groove of the β-subunit, which thereafter becomes tightly locked by fixing the previously disordered N-terminal arm of the α-subunit over the β-ATP. Next, we propose a nucleophilic attack of molybdate onto the γ-phosphate of β-ATP, analogous to the similar reaction of the structurally related UMP kinase. The formed instable phosphoric-molybdic anhydride becomes immediately hydrolyzed and, according to the current data, the released and accelerated molybdate is pressed through the cage wall, presumably by turning aside the Metβ149 side chain. A structural comparison between MoSto and UMP kinase provides valuable insight into how an enzyme is converted into a molecular machine during evolution. The postulated direct conversion of chemical energy into kinetic energy via an activating molybdate kinase and an exothermic pyrophosphatase reaction to overcome a proteinous barrier represents a novelty in ATP-fueled biochemistry, because normally, ATP hydrolysis initiates large-scale conformational changes to drive a distant process.

Details

Language :
English
ISSN :
1091-6490
Volume :
116
Issue :
52
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
31811022
Full Text :
https://doi.org/10.1073/pnas.1913031116