Back to Search
Start Over
Tuning, optimization, and perovskite solar cell device integration of ultrathin poly(3,4-ethylene dioxythiophene) films via a single-step all-dry process.
- Source :
-
Science advances [Sci Adv] 2019 Nov 22; Vol. 5 (11), pp. eaay0414. Date of Electronic Publication: 2019 Nov 22 (Print Publication: 2019). - Publication Year :
- 2019
-
Abstract
- For semicrystalline poly(3,4-ethylene dioxythiophene) (PEDOT), oxidative chemical vapor deposition (oCVD) enables systematic control over the b -axis lattice parameter (π-π stacking distance). Decreasing the b -axis lattice parameter increases the charge transfer integral, thus enhancing intracrystallite mobility. To reduce the barrier to intercrystallite transport, oCVD conditions were tailored to produce pure face-on crystallite orientation rather than the more common edge-on orientation. The face-on oriented oCVD PEDOT with the lowest b -axis lattice parameter displayed the highest in-plane electrical conductivity (σ <subscript>dc</subscript> = 2800 S/cm), largest optical bandgap (2.9 eV), and lowest degree of disorder as characterized by the Urbach band edge energy. With the single step oCVD process at growth conditions compatible with direct deposition onto flexible plastic substrates, the ratio σ <subscript>dc</subscript> /σ <subscript>op</subscript> reached 50. As compared to spun-cast PEDOT:polystyrene sulfonate, integration of oCVD PEDOT as a hole transport layer (HTL) improved both the power conversion efficiency (PCE) and shelf-life stability of inverted perovskite solar cells (PSC).<br /> (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
Details
- Language :
- English
- ISSN :
- 2375-2548
- Volume :
- 5
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Science advances
- Publication Type :
- Academic Journal
- Accession number :
- 31803838
- Full Text :
- https://doi.org/10.1126/sciadv.aay0414