Back to Search
Start Over
The α 1 -adrenoceptor inhibitor ρ-TIA facilitates net hunting in piscivorous Conus tulipa.
- Source :
-
Scientific reports [Sci Rep] 2019 Nov 28; Vol. 9 (1), pp. 17841. Date of Electronic Publication: 2019 Nov 28. - Publication Year :
- 2019
-
Abstract
- Cone snails use separately evolved venoms for prey capture and defence. While most use a harpoon for prey capture, the Gastridium clade that includes the well-studied Conus geographus and Conus tulipa, have developed a net hunting strategy to catch fish. This unique feeding behaviour requires secretion of "nirvana cabal" peptides to dampen the escape response of targeted fish allowing for their capture directly by mouth. However, the active components of the nirvana cabal remain poorly defined. In this study, we evaluated the behavioural effects of likely nirvana cabal peptides on the teleost model, Danio rerio (zebrafish). Surprisingly, the conantokins (NMDA receptor antagonists) and/or conopressins (vasopressin receptor agonists and antagonists) found in C. geographus and C. tulipa venom failed to produce a nirvana cabal-like effect in zebrafish. In contrast, low concentrations of the non-competitive adrenoceptor antagonist ρ-TIA found in C. tulipa venom (EC <subscript>50</subscript> = 190 nM) dramatically reduced the escape response of zebrafish larvae when added directly to aquarium water. ρ-TIA inhibited the zebrafish α <subscript>1</subscript> -adrenoceptor, confirming ρ-TIA has the potential to reverse the known stimulating effects of norepinephrine on fish behaviour. ρ-TIA may act alone and not as part of a cabal, since it did not synergise with conopressins and/or conantokins. This study highlights the importance of using ecologically relevant animal behaviour models to decipher the complex neurobiology underlying the prey capture and defensive strategies of cone snails.
- Subjects :
- Adrenergic alpha-1 Receptor Antagonists metabolism
Animals
Conus Snail physiology
Mollusk Venoms metabolism
Receptors, Adrenergic, alpha-1 metabolism
Zebrafish metabolism
Zebrafish physiology
Zebrafish Proteins metabolism
Adrenergic alpha-1 Receptor Antagonists toxicity
Conus Snail metabolism
Escape Reaction drug effects
Mollusk Venoms toxicity
Predatory Behavior
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 9
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 31780714
- Full Text :
- https://doi.org/10.1038/s41598-019-54186-y