Back to Search
Start Over
Exosomal secretion of a psychosis-altered miRNA that regulates glutamate receptor expression is affected by antipsychotics.
- Source :
-
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology [Neuropsychopharmacology] 2020 Mar; Vol. 45 (4), pp. 656-665. Date of Electronic Publication: 2019 Nov 27. - Publication Year :
- 2020
-
Abstract
- The ability of small secretory microvesicles known as exosomes to influence neuronal and glial function via their microRNA (miRNA) cargo has positioned them as a novel and effective method of cell-to-cell communication. However, little is known about the role of exosome-secreted miRNAs in the regulation of glutamate receptor gene expression and their relevance for schizophrenia (SCZ) and bipolar disorder (BD). Using mature miRNA profiling and quantitative real-time PCR (qRT-PCR) in the orbitofrontal cortex (OFC) of SCZ (N = 29; 20 male and 9 female), BD (N = 26; 12 male and 14 female), and unaffected control (N = 25; 21 male and 4 female) subjects, we uncovered that miR-223, an exosome-secreted miRNA that targets glutamate receptors, was increased at the mature miRNA level in the OFC of SCZ and BD patients with positive history of psychosis at the time of death and was inversely associated with deficits in the expression of its targets glutamate ionotropic receptor NMDA-type subunit 2B (GRIN2B) and glutamate ionotropic receptor AMPA-type subunit 2 (GRIA2). Furthermore, changes in miR-223 levels in the OFC were positively and negatively correlated with inflammatory and GABAergic gene expression, respectively. Moreover, miR-223 was found to be enriched in astrocytes and secreted via exosomes, and antipsychotics were shown to control its cellular and exosomal localization in a cell-specific manner. Furthermore, addition of astrocytic exosomes in neuronal cultures resulted in a significant increase in miR-223 expression and a notable reduction in Grin2b and Gria2 mRNA levels, which was strongly inversely associated with miR-223 expression. Lastly, inhibition of astrocytic miR-223 abrogated the exosomal-mediated reduction in neuronal Grin2b expression. Taken together, our results demonstrate that the exosomal secretion of a psychosis-altered and glial-enriched miRNA that controls neuronal gene expression is regulated by antipsychotics.
- Subjects :
- Animals
Antipsychotic Agents therapeutic use
Cells, Cultured
Exosomes genetics
Female
Gene Expression
Humans
Male
Mice
Mice, Inbred C57BL
MicroRNAs antagonists & inhibitors
MicroRNAs genetics
Rats
Rats, Sprague-Dawley
Receptors, N-Methyl-D-Aspartate antagonists & inhibitors
Receptors, N-Methyl-D-Aspartate genetics
Schizophrenia drug therapy
Schizophrenia genetics
Antipsychotic Agents pharmacology
Exosomes drug effects
Exosomes metabolism
MicroRNAs biosynthesis
Receptors, N-Methyl-D-Aspartate biosynthesis
Schizophrenia metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1740-634X
- Volume :
- 45
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 31775160
- Full Text :
- https://doi.org/10.1038/s41386-019-0579-1