Back to Search Start Over

Basic-hydrophobic sites are localized in conserved positions inside and outside of PH domains and affect localization of Dictyostelium myosin 1s.

Authors :
Brzeska H
Gonzalez J
Korn ED
Titus MA
Source :
Molecular biology of the cell [Mol Biol Cell] 2020 Jan 15; Vol. 31 (2), pp. 101-117. Date of Electronic Publication: 2019 Nov 27.
Publication Year :
2020

Abstract

Myosin 1s have critical roles in linking membranes to the actin cytoskeleton via direct binding to acidic lipids. Lipid binding may occur through PIP3/PIP2-specific PH domains or nonspecific ionic interactions involving basic-hydrophobic (BH) sites but the mechanism of myosin 1s distinctive lipid targeting is poorly understood.  Now we show that PH domains occur in all Dictyostelium myosin 1s and that the BH sites of Myo1A, B, C, D, and F are in conserved positions near the β3/β4 loops of their PH domains. In spite of these shared lipid-binding sites, we observe significant differences in myosin 1s highly dynamic localizations. All myosin 1s except Myo1A are present in macropinocytic structures but only Myo1B and Myo1C are enriched at the edges of macropinocytic cups and associate with the actin in actin waves.  In contrast, Myo1D, E, and F are enclosed by the actin wave.  Mutations of BH sites affect localization of all Dictyostelium myosin 1s. Notably, mutation of the BH site located within the PH domains of PIP3-specific Myo1D and Myo1F completely eradicates membrane binding. Thus, BH sites are important determinants of motor targeting and may have a similar role in the localization of other myosin 1s.

Details

Language :
English
ISSN :
1939-4586
Volume :
31
Issue :
2
Database :
MEDLINE
Journal :
Molecular biology of the cell
Publication Type :
Academic Journal
Accession number :
31774725
Full Text :
https://doi.org/10.1091/mbc.E19-08-0475