Back to Search
Start Over
Detection of Drug-Induced Torsades de Pointes Arrhythmia Mechanisms Using hiPSC-CM Syncytial Monolayers in a High-Throughput Screening Voltage Sensitive Dye Assay.
- Source :
-
Toxicological sciences : an official journal of the Society of Toxicology [Toxicol Sci] 2020 Feb 01; Vol. 173 (2), pp. 402-415. - Publication Year :
- 2020
-
Abstract
- We validated 3 distinct hiPSC-CM cell lines-each of different purity and a voltage sensitive dye (VSD)-based high-throughput proarrhythmia screening assay as a noncore site in the recently completed CiPA Myocyte Phase II Validation Study. Blinded validation was performed using 12 drugs linked to low, intermediate, or high risk for causing Torsades de Pointes (TdP). Commercially sourced hiPSC-CMs were obtained either from Cellular Dynamics International (CDI, Madison, Wisconsin, iCell Cardiomyoyctes2) or Takara Bio (CLS, Cellartis Cardiomyocytes). A third hiPSC-CM cell line (MCH, Michigan) was generated in house. Each cell type had distinct baseline electrophysiological function (spontaneous beat rate, action potential duration, and conduction velocity) and drug responsiveness. Use of VSD and optical mapping enabled the detection of conduction slowing of sodium channel blockers (quinidine, disopyramide, and mexiletine) and drug-induced TdP-like activation patterns (rotors) for some high- and intermediate-risk compounds. Low-risk compounds did not induce rotors in any cell type tested. These results further validate the utility of hiPSC-CMs for predictive proarrhythmia screening and the utility of VSD technology to detect drug-induced APD prolongation, arrhythmias (rotors), and conduction slowing. Importantly, results indicate that different ratios of cardiomyocytes and noncardiomyocytes have important impact on drug response that may be considered during risk assessment of new drugs. Finally, we present the first blinded CiPA hiPSC-CM validation results to simultaneously detect drug-induced conduction slowing, action potential duration prolongation, action potential triangulation, and drug-induced rotors in a proarrhythmia assay.<br /> (© The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Subjects :
- Cell Line
High-Throughput Screening Assays
Induced Pluripotent Stem Cells
Myocytes, Cardiac metabolism
Risk Assessment
Sodium Channel Blockers pharmacology
Torsades de Pointes chemically induced
Voltage-Sensitive Dye Imaging
Arrhythmias, Cardiac chemically induced
Myocytes, Cardiac drug effects
Myocytes, Cardiac physiology
Torsades de Pointes physiopathology
Subjects
Details
- Language :
- English
- ISSN :
- 1096-0929
- Volume :
- 173
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Toxicological sciences : an official journal of the Society of Toxicology
- Publication Type :
- Academic Journal
- Accession number :
- 31764978
- Full Text :
- https://doi.org/10.1093/toxsci/kfz235