Back to Search
Start Over
A novel surgical predictive model for Chinese Crohn's disease patients.
- Source :
-
Medicine [Medicine (Baltimore)] 2019 Nov; Vol. 98 (46), pp. e17510. - Publication Year :
- 2019
-
Abstract
- Due to the complexity of Crohn's disease (CD), it is difficult to predict disease course with a single stratification factor or biomarker. A logistic regression (LR) model has been proposed by Guizzetti et al to stratify patients with CD-related surgical risk, which could help decision-making on disease treatment. However, there are no reports on relevant studies on Chinese population. The aim of the study is to present and validate a novel surgical predictive model to facilitate therapeutic decision-making for Chinese CD patients. Data was extracted from retrospective full-mode electronic medical records, which contained 239 CD patients and 1524 instances. Two sub-datasets were generated according to different attribute selection strategies, both of which were split into training and testing sets randomly. The imbalanced data in the training sets was addressed by synthetic minority over-sampling technique (SMOTE) algorithm before model development. Seven predictive models were employed using 5 popular machine learning algorithms: random forest (RF), LR, support vector machine (SVM), decision tree (DT) and artificial neural networks (ANN). The performance of each model was evaluated by accuracy, precision, F1-score, true negative (TN) rate, and the area under the receiver operating characteristic curve (AuROC). The result revealed that RF outperformed all other baseline models on both sub-datasets. The 10 leading risk factors for CD-related surgery returned from RF for attribute ranking were changes of radiology, presence of a fistula, presence of an abscess, no infliximab use, enteroscopy findings, C-reactive protein, abdominal pain, white blood cells, erythrocyte sedimentation rate and platelet count. The proposed machine learning model can accurately predict the risk of surgical intervention in Chinese CD patients, which could be used to tailor and modify the treatment strategies for CD patients in clinical practice.
- Subjects :
- Adult
Algorithms
Area Under Curve
Asian People statistics & numerical data
China
Decision Trees
Female
Humans
Logistic Models
Machine Learning statistics & numerical data
Male
Neural Networks, Computer
Predictive Value of Tests
ROC Curve
Retrospective Studies
Risk Assessment methods
Risk Factors
Support Vector Machine
Crohn Disease diagnosis
Crohn Disease surgery
Decision Support Techniques
Endoscopy, Digestive System statistics & numerical data
Models, Anatomic
Subjects
Details
- Language :
- English
- ISSN :
- 1536-5964
- Volume :
- 98
- Issue :
- 46
- Database :
- MEDLINE
- Journal :
- Medicine
- Publication Type :
- Academic Journal
- Accession number :
- 31725605
- Full Text :
- https://doi.org/10.1097/MD.0000000000017510