Back to Search Start Over

Tributyltin chloride (TBT) induces RXRA down-regulation and lipid accumulation in human liver cells.

Authors :
Stossi F
Dandekar RD
Johnson H
Lavere P
Foulds CE
Mancini MG
Mancini MA
Source :
PloS one [PLoS One] 2019 Nov 11; Vol. 14 (11), pp. e0224405. Date of Electronic Publication: 2019 Nov 11 (Print Publication: 2019).
Publication Year :
2019

Abstract

A subset of environmental chemicals acts as "obesogens" as they increase adipose mass and lipid content in livers of treated rodents. One of the most studied class of obesogens are the tin-containing chemicals that have as a central moiety tributyltin (TBT), which bind and activate two nuclear hormone receptors, Peroxisome Proliferator Activated Receptor Gamma (PPARG) and Retinoid X Receptor Alpha (RXRA), at nanomolar concentrations. Here, we have tested whether TBT chloride at such concentrations may affect the neutral lipid level in two cell line models of human liver. Indeed, using high content image analysis (HCA), TBT significantly increased neutral lipid content in a time- and concentration-dependent manner. Consistent with the observed increased lipid accumulation, RNA fluorescence in situ hybridization (RNA FISH) and RT-qPCR experiments revealed that TBT enhanced the steady-state mRNA levels of two key genes for de novo lipogenesis, the transcription factor SREBF1 and its downstream enzymatic target, FASN. Importantly, pre-treatment of cells with 2-deoxy-D-glucose reduced TBT-mediated lipid accumulation, thereby suggesting a role for active glycolysis during the process of lipid accumulation. As other RXRA binding ligands can promote RXRA protein turnover via the 26S proteasome, TBT was tested for such an effect in the two liver cell lines. We found that TBT, in a time- and dose-dependent manner, significantly reduced steady-state RXRA levels in a proteasome-dependent manner. While TBT promotes both RXRA protein turnover and lipid accumulation, we found no correlation between these two events at the single cell level, thereby suggesting an additional mechanism may be involved in TBT promotion of lipid accumulation, such as glycolysis.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1932-6203
Volume :
14
Issue :
11
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
31710612
Full Text :
https://doi.org/10.1371/journal.pone.0224405