Back to Search Start Over

ProtRank: bypassing the imputation of missing values in differential expression analysis of proteomic data.

Authors :
Medo M
Aebersold DM
Medová M
Source :
BMC bioinformatics [BMC Bioinformatics] 2019 Nov 09; Vol. 20 (1), pp. 563. Date of Electronic Publication: 2019 Nov 09.
Publication Year :
2019

Abstract

Background: Data from discovery proteomic and phosphoproteomic experiments typically include missing values that correspond to proteins that have not been identified in the analyzed sample. Replacing the missing values with random numbers, a process known as "imputation", avoids apparent infinite fold-change values. However, the procedure comes at a cost: Imputing a large number of missing values has the potential to significantly impact the results of the subsequent differential expression analysis.<br />Results: We propose a method that identifies differentially expressed proteins by ranking their observed changes with respect to the changes observed for other proteins. Missing values are taken into account by this method directly, without the need to impute them. We illustrate the performance of the new method on two distinct datasets and show that it is robust to missing values and, at the same time, provides results that are otherwise similar to those obtained with edgeR which is a state-of-art differential expression analysis method.<br />Conclusions: The new method for the differential expression analysis of proteomic data is available as an easy to use Python package.

Details

Language :
English
ISSN :
1471-2105
Volume :
20
Issue :
1
Database :
MEDLINE
Journal :
BMC bioinformatics
Publication Type :
Academic Journal
Accession number :
31706265
Full Text :
https://doi.org/10.1186/s12859-019-3144-3