Back to Search
Start Over
Complex I is bypassed during high intensity exercise.
- Source :
-
Nature communications [Nat Commun] 2019 Nov 07; Vol. 10 (1), pp. 5072. Date of Electronic Publication: 2019 Nov 07. - Publication Year :
- 2019
-
Abstract
- Human muscles are tailored towards ATP synthesis. When exercising at high work rates muscles convert glucose to lactate, which is less nutrient efficient than respiration. There is hence a trade-off between endurance and power. Metabolic models have been developed to study how limited catalytic capacity of enzymes affects ATP synthesis. Here we integrate an enzyme-constrained metabolic model with proteomics data from muscle fibers. We find that ATP synthesis is constrained by several enzymes. A metabolic bypass of mitochondrial complex I is found to increase the ATP synthesis rate per gram of protein compared to full respiration. To test if this metabolic mode occurs in vivo, we conduct a high resolved incremental exercise tests for five subjects. Their gas exchange at different work rates is accurately reproduced by a whole-body metabolic model incorporating complex I bypass. The study therefore shows how proteome allocation influences metabolism during high intensity exercise.
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 31699973
- Full Text :
- https://doi.org/10.1038/s41467-019-12934-8