Back to Search Start Over

Granisetron Alleviates Alzheimer's Disease Pathology in TgSwDI Mice Through Calmodulin-Dependent Protein Kinase II/cAMP-Response Element Binding Protein Pathway.

Authors :
Al Rihani SB
Lan RS
Kaddoumi A
Source :
Journal of Alzheimer's disease : JAD [J Alzheimers Dis] 2019; Vol. 72 (4), pp. 1097-1117.
Publication Year :
2019

Abstract

Alzheimer's disease (AD) is characterized by a compromised blood-brain barrier (BBB) and disrupted intracellular calcium homeostasis in the brain. Therefore, rectifying the BBB integrity and restoring calcium homeostasis could provide an effective strategy to treat AD. Recently, we developed a high throughput-screening assay to screen for compounds that enhance a cell-based BBB model integrity, which identified multiple hits among which is granisetron, a Food and Drug Administration approved drug. Here, we evaluated the therapeutic potential of granisetron against AD. Granisetron was tested in C57Bl/6J young and aged wild-type mice, and in a transgenic mouse model of AD namely TgSwDI for its effect on BBB intactness and amyloid-β (Aβ)-related pathology. Our study findings showed that granisetron enhanced BBB integrity in both aged and TgSwDI mice. This effect was associated with an overall reduction in Aβ load and neuroinflammation in TgSwDI mice brains. In addition, and supported by proteomics analysis, granisetron significantly reduced Aβ induced calcium influx in vitro, and rectified calcium dyshomeostasis in TgSwDI mice brains by restoring calmodulin-dependent protein kinase II/cAMP-response element binding protein pathway, which was associated with cognitive improvement. These results support granisetron repurposing as a potential drug to hold, slow, and/or treat AD.

Details

Language :
English
ISSN :
1875-8908
Volume :
72
Issue :
4
Database :
MEDLINE
Journal :
Journal of Alzheimer's disease : JAD
Publication Type :
Academic Journal
Accession number :
31683487
Full Text :
https://doi.org/10.3233/JAD-190849