Back to Search
Start Over
Zinc uptake and phyto-toxicity: Comparing intensity- and capacity-based drivers.
- Source :
-
The Science of the total environment [Sci Total Environ] 2020 Jan 10; Vol. 699, pp. 134314. Date of Electronic Publication: 2019 Sep 06. - Publication Year :
- 2020
-
Abstract
- Metal bioavailability and phytotoxicity may be exaggerated when derived from studies based on amending soils with soluble metal salts. It is therefore important to evaluate soil tests for their consistency in estimating plant uptake and phytotoxicity in both field-contaminated and freshly-spiked soils. This study aimed to compare the effects of zinc (Zn) on plant growth in soils (i) recently spiked with soluble Zn and (ii) historically amended with biosolids. The objective was to reconcile methods for determining bioavailability in both cases by testing a range of 'quantity-based' and 'intensity-based' assays. Soils with a range of Zn concentrations, from an arable farm used for biosolids disposal for over a century, were further amended with Zn added in solution, and were incubated for one month prior to planting with barley seeds in a glasshouse pot trial. The majority (67-90%) of the added Zn remained isotopically exchangeable after 60 days. Zinc in the solution phase of a soil suspension was present mainly as free Zn <superscript>2+</superscript> ions. Cadmium bioaccumulation factors were inversely proportional to Zn concentration in the soil solution confirming that greater Zn availability suppressed Cd uptake by plants. Measurements of soil Zn 'quantities' (total, EDTA-extractable and isotopically exchangeable) and 'intensity' (solution concentration and free ion activity) were correlated with Zn uptake and toxicity by barley plants. Correlations using Zn intensity were much stronger than those using quantity-based measurements. The free Zn <superscript>2+</superscript> ion activity appears to be a consistent driver for plant uptake and phytotoxic response for both metal-spiked soils and historically contaminated soils. Surprisingly, soil Zn accumulation of up to 100 times the current regulations for normal arable land only produced a mild toxic response suggesting that constituents in biosolids (e.g. organic matter and phosphates) strongly restrict metal bioavailability.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 699
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 31678875
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2019.134314