Back to Search Start Over

In vitro glucuronidation of 7-hydroxycoumarin derivatives in intestine and liver microsomes of Beagle dogs.

Authors :
Juvonen RO
Heikkinen AT
Kärkkäinen O
Jehangir R
Huuskonen J
Troberg J
Raunio H
Pentikäinen OT
Finel M
Source :
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences [Eur J Pharm Sci] 2020 Jan 01; Vol. 141, pp. 105118. Date of Electronic Publication: 2019 Oct 25.
Publication Year :
2020

Abstract

Beagle dog is a standard animal model for evaluating nonclinical pharmacokinetics of new drug candidates. Glucuronidation in intestine and liver is an important first-pass drug metabolic pathway, especially for phenolic compounds. This study evaluated the glucuronidation characteristics of several 7-hydroxycoumarin derivatives in beagle dog's intestine and liver in vitro. To this end, glucuronidation rates of 7-hydroxycoumarin (compound 1), 7-hydroxy-4-trifluoromethylcoumarin (2), 6-methoxy-7-hydroxycoumarin (3), 7-hydroxy-3-(4-tolyl)coumarin (4), 3-(4-fluorophenyl)coumarin (5), 7-hydroxy-3-(4-hydroxyphenyl)coumarin (6), 7-hydroxy-3-(4-methoxyphenyl)coumarin (7), and 7-hydroxy-3-(1H-1,2,4-tirazole)coumarin (8) were determined in dog's intestine and liver microsomes, as well as recombinant dog UGT1A enzymes. The glucuronidation rates of 1, 2 and 3 were 3-10 times higher in liver than in small intestine microsomes, whereas glucuronidation rates of 5, 6, 7 and 8 were similar in microsomes from both tissues. In the colon, glucuronidation of 1 and 2 was 3-5 times faster than in small intestine. dUGT1A11 glucuronidated efficiently all the substrates and was more efficient catalyst for 8 than any other dUGT1A. Other active enzymes were dUGT1A2 that glucuronidated efficiently 2, 3, 4, 5, 6 and 7, while dUGT1A10 glucuronidated efficiently 1, 2, 3, 4, 5 and 7. Kinetic analyses revealed that the compounds' K <subscript>m</subscript> values varied between 1.1 (dUGT1A10 and 2) and 250 µM (dUGT1A7 and 4). The results further strengthen the concept that dog intestine has high capacity for glucuronidation, and that different dUGT1As mediate glucuronidation with distinct substrates selectivity in dog and human.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0720
Volume :
141
Database :
MEDLINE
Journal :
European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
Publication Type :
Academic Journal
Accession number :
31669387
Full Text :
https://doi.org/10.1016/j.ejps.2019.105118