Back to Search
Start Over
Molecular studies of NAD- and NADP-glutamate dehydrogenases decipher the conundrum of yeast-hypha dimorphism in zygomycete Benjaminiella poitrasii.
- Source :
-
FEMS yeast research [FEMS Yeast Res] 2019 Dec 01; Vol. 19 (8). - Publication Year :
- 2019
-
Abstract
- Benjaminiella poitrasii, a zygomycete, shows glucose- and temperature-dependent yeast (Y)-hypha (H) dimorphic transition. Earlier, we reported the biochemical correlation of relative proportion of NAD- and NADP-glutamate dehydrogenases (GDHs) with Y-H transition. Further, we observed the presence of one NAD-GDH and two form-specific NADP-GDH isoenzymes in B. poitrasii. However, molecular studies are necessary to elucidate the explicit role of GDHs in regulating Y-H reversible transition. Here, we report the isolation and characterization of one NAD (BpNADGDH, 2.643 kb) and two separate genes, BpNADPGDH I (Y-form specific, 1.365 kb) and BpNADPGDH II (H-form specific, 1.368 kb) coding for NADP-GDH isoenzymes in B. poitrasii. The transcriptional profiling during Y-H transition showed higher BpNADPGDH I expression in Y cells while expression of BpNADPGDH II was higher in H cells. Moreover, the yeast-form monomorphic mutant (Y-5) did not show BpNADPGDH II expression under normal dimorphism triggering conditions. Transformation with H-form specific BpNADPGDH II induced the germ tube formation in Y-5, which confirmed the cause-effect relationship between BpNADPGDH genes and morphological outcome in B. poitrasii. Interestingly, expression of H-form specific BpNADPGDH II also induced germ tube formation in human pathogenic, non-dimorphic yeast Candida glabrata, which further corroborated our findings.<br /> (© FEMS 2019.)
Details
- Language :
- English
- ISSN :
- 1567-1364
- Volume :
- 19
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- FEMS yeast research
- Publication Type :
- Academic Journal
- Accession number :
- 31644791
- Full Text :
- https://doi.org/10.1093/femsyr/foz074