Back to Search Start Over

Molecular studies of NAD- and NADP-glutamate dehydrogenases decipher the conundrum of yeast-hypha dimorphism in zygomycete Benjaminiella poitrasii.

Authors :
Pathan EK
Ghormade V
Panwar SL
Prasad R
Deshpande MV
Source :
FEMS yeast research [FEMS Yeast Res] 2019 Dec 01; Vol. 19 (8).
Publication Year :
2019

Abstract

Benjaminiella poitrasii, a zygomycete, shows glucose- and temperature-dependent yeast (Y)-hypha (H) dimorphic transition. Earlier, we reported the biochemical correlation of relative proportion of NAD- and NADP-glutamate dehydrogenases (GDHs) with Y-H transition. Further, we observed the presence of one NAD-GDH and two form-specific NADP-GDH isoenzymes in B. poitrasii. However, molecular studies are necessary to elucidate the explicit role of GDHs in regulating Y-H reversible transition. Here, we report the isolation and characterization of one NAD (BpNADGDH, 2.643 kb) and two separate genes, BpNADPGDH I (Y-form specific, 1.365 kb) and BpNADPGDH II (H-form specific, 1.368 kb) coding for NADP-GDH isoenzymes in B. poitrasii. The transcriptional profiling during Y-H transition showed higher BpNADPGDH I expression in Y cells while expression of BpNADPGDH II was higher in H cells. Moreover, the yeast-form monomorphic mutant (Y-5) did not show BpNADPGDH II expression under normal dimorphism triggering conditions. Transformation with H-form specific BpNADPGDH II induced the germ tube formation in Y-5, which confirmed the cause-effect relationship between BpNADPGDH genes and morphological outcome in B. poitrasii. Interestingly, expression of H-form specific BpNADPGDH II also induced germ tube formation in human pathogenic, non-dimorphic yeast Candida glabrata, which further corroborated our findings.<br /> (© FEMS 2019.)

Details

Language :
English
ISSN :
1567-1364
Volume :
19
Issue :
8
Database :
MEDLINE
Journal :
FEMS yeast research
Publication Type :
Academic Journal
Accession number :
31644791
Full Text :
https://doi.org/10.1093/femsyr/foz074