Back to Search Start Over

The planktonic stages of the salmon louse ( Lepeophtheirus salmonis) are tolerant of end-of-century p CO 2 concentrations.

Authors :
Thompson CRS
Fields DM
Bjelland RM
Chan VBS
Durif CMF
Mount A
Runge JA
Shema SD
Skiftesvik AB
Browman HI
Source :
PeerJ [PeerJ] 2019 Oct 14; Vol. 7, pp. e7810. Date of Electronic Publication: 2019 Oct 14 (Print Publication: 2019).
Publication Year :
2019

Abstract

The copepod Lepeophtheirus salmonis is an obligate ectoparasite of salmonids. Salmon lice are major pests in salmon aquaculture and due to its economic impact Lepeophtheirus salmonis is one of the most well studied species of marine parasite. However, there is limited understanding of how increased concentration of p CO <subscript>2</subscript> associated with ocean acidification will impact host-parasite relationships. We investigated the effects of increased p CO <subscript>2</subscript> on growth and metabolic rates in the planktonic stages, rearing L. salmonis from eggs to 12 days post hatch copepodids under three treatment levels: Control (416 µatm), Mid (747 µatm), and High (942 µatm). The p CO <subscript>2</subscript> treatment had a significant effect on oxygen consumption rate with the High treatment animals exhibiting the greatest respiration. The treatments did not have a significant effect on the other biological endpoints measured (carbon, nitrogen, lipid volume, and fatty acid content). The results indicate that L. salmonis have mechanisms to compensate for increased concentration of p CO <subscript>2</subscript> and that populations will be tolerant of projected future ocean acidification scenarios. The work reported here also describes catabolism during the lecithotrophic development of L. salmonis, information that is not currently available to parameterize models of dispersal and viability of the planktonic free-living stages.<br />Competing Interests: The authors declare there are no competing interests.<br /> (©2019 Thompson et al.)

Details

Language :
English
ISSN :
2167-8359
Volume :
7
Database :
MEDLINE
Journal :
PeerJ
Publication Type :
Academic Journal
Accession number :
31632848
Full Text :
https://doi.org/10.7717/peerj.7810