Back to Search Start Over

Precluding rare outcomes by predicting their absence.

Authors :
Schoon EW
Melamed D
Breiger RL
Yoon E
Kleps C
Source :
PloS one [PLoS One] 2019 Oct 10; Vol. 14 (10), pp. e0223239. Date of Electronic Publication: 2019 Oct 10 (Print Publication: 2019).
Publication Year :
2019

Abstract

Forecasting extremely rare events is a pressing problem, but efforts to model such outcomes are often limited by the presence of multiple causes within classes of events, insufficient observations of the outcome to assess fit, and biased estimates due to insufficient observations of the outcome. We introduce a novel approach for analyzing rare event data that addresses these challenges by turning attention to the conditions under which rare outcomes do not occur. We detail how configurational methods can be used to identify conditions or sets of conditions that would preclude the occurrence of a rare outcome. Results from Monte Carlo experiments show that our approach can be used to systematically preclude up to 78.6% of observations, and application to ground-truth data coupled with a bootstrap inferential test illustrates how our approach can also yield novel substantive insights that are obscured by standard statistical analyses.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1932-6203
Volume :
14
Issue :
10
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
31600272
Full Text :
https://doi.org/10.1371/journal.pone.0223239