Back to Search
Start Over
ICU staffing feature phenotypes and their relationship with patients' outcomes: an unsupervised machine learning analysis.
- Source :
-
Intensive care medicine [Intensive Care Med] 2019 Nov; Vol. 45 (11), pp. 1599-1607. Date of Electronic Publication: 2019 Oct 08. - Publication Year :
- 2019
-
Abstract
- Purpose: To study whether ICU staffing features are associated with improved hospital mortality, ICU length of stay (LOS) and duration of mechanical ventilation (MV) using cluster analysis directed by machine learning.<br />Methods: The following variables were included in the analysis: average bed to nurse, physiotherapist and physician ratios, presence of 24/7 board-certified intensivists and dedicated pharmacists in the ICU, and nurse and physiotherapist autonomy scores. Clusters were defined using the partition around medoids method. We assessed the association between clusters and hospital mortality using logistic regression and with ICU LOS and MV duration using competing risk regression.<br />Results: Analysis included data from 129,680 patients admitted to 93 ICUs (2014-2015). Three clusters were identified. The features distinguishing between the clusters were: the presence of board-certified intensivists in the ICU 24/7 (present in Cluster 3), dedicated pharmacists (present in Clusters 2 and 3) and the extent of nurse autonomy (which increased from Clusters 1 to 3). The patients in Cluster 3 exhibited the best outcomes, with lower adjusted hospital mortality [odds ratio 0.92 (95% confidence interval (CI), 0.87-0.98)], shorter ICU LOS [subhazard ratio (SHR) for patients surviving to ICU discharge 1.24 (95% CI 1.22-1.26)] and shorter durations of MV [SHR for undergoing extubation 1.61(95% CI 1.54-1.69)]. Cluster 1 had the worst outcomes.<br />Conclusion: Patients treated in ICUs combining 24/7 expert intensivist coverage, a dedicated pharmacist and nurses with greater autonomy had the best outcomes. All of these features represent achievable targets that should be considered by policy makers with an interest in promoting equal and optimal ICU care.
- Subjects :
- Brazil
Cluster Analysis
Hospital Bed Capacity statistics & numerical data
Humans
Intensive Care Units organization & administration
Intensive Care Units statistics & numerical data
Length of Stay statistics & numerical data
Length of Stay trends
Logistic Models
Nurses statistics & numerical data
Nurses supply & distribution
Odds Ratio
Organ Dysfunction Scores
Personnel Staffing and Scheduling classification
Personnel Staffing and Scheduling statistics & numerical data
Physical Therapists statistics & numerical data
Physical Therapists supply & distribution
Physicians statistics & numerical data
Physicians supply & distribution
Retrospective Studies
Time Factors
Hospital Mortality trends
Personnel Staffing and Scheduling standards
Unsupervised Machine Learning trends
Subjects
Details
- Language :
- English
- ISSN :
- 1432-1238
- Volume :
- 45
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Intensive care medicine
- Publication Type :
- Academic Journal
- Accession number :
- 31595349
- Full Text :
- https://doi.org/10.1007/s00134-019-05790-z