Back to Search Start Over

Charge Separation in Epitaxial SnS/MoS 2 Vertical Heterojunctions Grown by Low-Temperature Pulsed MOCVD.

Authors :
Olding JN
Henning A
Dong JT
Zhou Q
Moody MJ
Smeets PJM
Darancet P
Weiss EA
Lauhon LJ
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2019 Oct 30; Vol. 11 (43), pp. 40543-40550. Date of Electronic Publication: 2019 Oct 16.
Publication Year :
2019

Abstract

The weak van der Waals bonding between monolayers in layered materials enables fabrication of heterostructures without the constraints of conventional heteroepitaxy. Although many novel heterostructures have been created by mechanical exfoliation and stacking, the direct growth of 2D chalcogenide heterostructures creates new opportunities for large-scale integration. This paper describes the epitaxial growth of layered, p -type tin sulfide (SnS) on n -type molybdenum disulfide (MoS <subscript>2</subscript> ) by pulsed metal-organic chemical vapor deposition at 180 °C. The influence of precursor pulse and purge times on film morphology establishes growth conditions that favor layer-by-layer growth of SnS, which is critical for materials with layer-dependent electronic properties. Kelvin probe force microscopy measurements determine a built-in potential as high as 0.95 eV, and under illumination a surface photovoltage is generated, consistent with the expected Type-II band alignment for a multilayer SnS/MoS <subscript>2</subscript> heterostructure. The bottom-up growth of a nonisostructural heterojunction comprising 2D semiconductors expands the combinations of materials available for scalable production of ultrathin devices with field-tunable responses.

Details

Language :
English
ISSN :
1944-8252
Volume :
11
Issue :
43
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
31573788
Full Text :
https://doi.org/10.1021/acsami.9b14412