Back to Search Start Over

Selecting Patients for Oncotype DX Testing Using Standard Clinicopathologic Information.

Authors :
Robertson SJ
Pond GR
Hilton J
Petkiewicz SL
Ayroud Y
Kos Z
Gravel DH
Stober C
Vandermeer L
Arnaout A
Clemons M
Source :
Clinical breast cancer [Clin Breast Cancer] 2020 Feb; Vol. 20 (1), pp. 61-67. Date of Electronic Publication: 2019 Aug 22.
Publication Year :
2020

Abstract

Introduction: Indiscriminate ordering of Oncotype DX (ODX) is expensive and of poor value to patients, physicians, and health care providers. The 3 Magee equations, Gage Algorithm, and University of Tennessee predictive algorithm all use standard clinicopathologic data to provide surrogate ODX scores. In this hypothesis-generating study, we evaluated whether these prognostic scores could be used to identify patients unlikely to benefit from additional ODX testing.<br />Patients and Methods: Retrospective data was collected from 302 patients with invasive ductal breast cancer and available ODX scores. Additional data was available for: Magee equations 1 (212 patients), 2 (299 patients), 3 (212 patients), Gage Algorithm (299 patients), and University of Tennessee predictive algorithm (286 patients). ODX scores were banded according to the TAILORx results.<br />Results: Correlation with ODX scores was between 0.7 and 0.8 (Gage), 0.8 and 0.9 (Magee 2, University of Tennessee predictive algorithm), and > 0.9 (Magee 1 and 3). Magee 3 was the most robust and is proposed as a screening tool: for patients aged ≤ 50 years, ODX testing would be not required if the Magee 3 score was < 14 or ≥ 20; for those aged > 50 years, ODX would not be required if the Magee 3 score was < 18 or ≥ 26. Using these cut-offs, 110 (51.9%) of 212 patients would be deemed as not requiring ODX testing, and 109 (99.1%) of110 patients would be appropriately managed.<br />Conclusions: Use of all formulae, and the Magee 3 equation in particular, are proposed as possible screening tools for ODX testing, resulting in significantly reduced frequency of ODX testing. This requires validation in other populations.<br /> (Copyright © 2019 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1938-0666
Volume :
20
Issue :
1
Database :
MEDLINE
Journal :
Clinical breast cancer
Publication Type :
Academic Journal
Accession number :
31551182
Full Text :
https://doi.org/10.1016/j.clbc.2019.07.006