Back to Search
Start Over
Unravelling the Acoustic and Thermal Responses of Perfluorocarbon Liquid Droplets Stabilized with Cellulose Nanofibers.
- Source :
-
Langmuir : the ACS journal of surfaces and colloids [Langmuir] 2019 Oct 08; Vol. 35 (40), pp. 13090-13099. Date of Electronic Publication: 2019 Sep 24. - Publication Year :
- 2019
-
Abstract
- The attractive colloidal and physicochemical properties of cellulose nanofibers (CNFs) at interfaces have recently been exploited in the facile production of a number of environmentally benign materials, e.g. foams, emulsions, and capsules. Herein, these unique properties are exploited in a new type of CNF-stabilized perfluoropentane droplets produced via a straightforward and simple mixing protocol. Droplets with a comparatively narrow size distribution (ca. 1-5 μm in diameter) were fabricated, and their potential in the acoustic droplet vaporization process was evaluated. For this, the particle-stabilized droplets were assessed in three independent experimental examinations, namely temperature, acoustic, and ultrasonic standing wave tests. During the acoustic droplet vaporization (ADV) process, droplets were converted to gas-filled microbubbles, offering enhanced visualization by ultrasound. The acoustic pressure threshold of about 0.62 MPa was identified for the cellulose-stabilized droplets. A phase transition temperature of about 22 °C was observed, at which a significant fraction of larger droplets (above ca. 3 μm in diameter) were converted into bubbles, whereas a large part of the population of smaller droplets were stable up to higher temperatures (temperatures up to 45 °C tested). Moreover, under ultrasound standing wave conditions, droplets were relocated to antinodes demonstrating the behavior associated with the negative contrast particles. The combined results make the CNF-stabilized droplets interesting in cell-droplet interaction experiments and ultrasound imaging.
Details
- Language :
- English
- ISSN :
- 1520-5827
- Volume :
- 35
- Issue :
- 40
- Database :
- MEDLINE
- Journal :
- Langmuir : the ACS journal of surfaces and colloids
- Publication Type :
- Academic Journal
- Accession number :
- 31549511
- Full Text :
- https://doi.org/10.1021/acs.langmuir.9b02132