Back to Search
Start Over
Identification of Cinnamaldehyde as Most Effective Fatty Acid Uptake Reducing Cinnamon-Derived Compound in Differentiated Caco-2 Cells Compared to Its Structural Analogues Cinnamyl Alcohol, Cinnamic Acid, and Cinnamyl Isobutyrate.
- Source :
-
Journal of agricultural and food chemistry [J Agric Food Chem] 2019 Oct 23; Vol. 67 (42), pp. 11638-11649. Date of Electronic Publication: 2019 Oct 14. - Publication Year :
- 2019
-
Abstract
- Naturally occurring cinnamon compounds such as cinnamaldehyde (CAL) and structurally related constituents have been associated with antiobesity activities, although studies regarding the impact on intestinal fatty acid uptake are scarce. Here, we demonstrate the effects of CAL and structural analogues cinnamyl alcohol (CALC), cinnamic acid (CAC), and cinnamyl isobutyrate on mechanisms regulating intestinal fatty acid uptake in differentiated Caco-2 cells. CAL, CALC, and CAC (3000 μM) were found to decrease fatty acid uptake by 58.0 ± 8.83, 19.4 ± 8.98, and 21.9 ± 6.55%, respectively. While CAL and CALC at a concentration of 300 μM increased serotonin release 14.9 ± 3.00- and 2.72 ± 0.69-fold, respectively, serotonin alone showed no effect on fatty acid uptake. However, CAL revealed transient receptor potential channel A1-dependency in the decrease of fatty acid uptake, as well as in CAL-induced serotonin release. Overall, CAL was identified as the most potent of the cinnamon constituents tested.
- Subjects :
- Acrolein chemistry
Acrolein pharmacology
Biological Transport drug effects
Caco-2 Cells
Cell Differentiation
Cinnamates chemistry
Humans
Intestinal Mucosa drug effects
Intestinal Mucosa metabolism
Plant Extracts chemistry
Propanols chemistry
Acrolein analogs & derivatives
Cinnamates pharmacology
Cinnamomum zeylanicum chemistry
Fatty Acids metabolism
Plant Extracts pharmacology
Propanols pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1520-5118
- Volume :
- 67
- Issue :
- 42
- Database :
- MEDLINE
- Journal :
- Journal of agricultural and food chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 31532204
- Full Text :
- https://doi.org/10.1021/acs.jafc.9b04274