Back to Search
Start Over
Cordycepin induces apoptosis in human bladder cancer T24 cells through ROS-dependent inhibition of the PI3K/Akt signaling pathway.
- Source :
-
Bioscience trends [Biosci Trends] 2019; Vol. 13 (4), pp. 324-333. - Publication Year :
- 2019
-
Abstract
- Cordycepin, a derivative of nucleoside adenosine, is one of the active ingredients extracted from the fungi of genus Cordyceps, which have been used for traditional herbal remedies. In this study, we examined the effect of cordycepin on the proliferation and apoptosis of human bladder cancer T24 cells and its mechanism of action. Cordycepin treatment significantly reduced the cell survival rate of T24 cells in a concentration-dependent manner, which was associated with the induction of apoptosis. Cordycepin activated caspase-8 and -9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and also increased caspase-3 activity, a typical effect caspase, subsequently leading to poly (ADP-ribose) polymerase cleavage. Additionally, cordycepin increased the Bax/Bcl-2 ratio and truncation of Bid, and destroyed the integrity of mitochondria, which contributed to the cytosolic release of cytochrome c. Moreover, cordycepin effectively inactivated the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, while LY294002, a PI3K/Akt inhibitor, increased the apoptosis-inducing effect of cordycepin. Cordycepin further enhanced the intracellular levels of reactive oxygen species (ROS), while the addition of N-acetyl cysteine (NAC), a ROS inhibitor, significantly diminished cordycepin-induced mitochondrial dysfunction and growth inhibition, and also blocked the inactivation of PI3K/Akt signaling pathway. Furthermore, the presence of NAC significantly attenuated the enhanced apoptotic cell death and reduction of cell viability by treatment with cordycepin and LY294002. Collectively, the data indicate that cordycepin induces apoptosis through the activation of extrinsic and intrinsic apoptosis pathways and the ROS-dependent inactivation of PI3K/Akt signaling in human bladder cancer T24 cells.
- Subjects :
- Acetylcysteine pharmacology
Antineoplastic Agents therapeutic use
Cell Line, Tumor
Cell Survival drug effects
Chromones pharmacology
Deoxyadenosines therapeutic use
Drug Evaluation, Preclinical
Humans
Morpholines pharmacology
Phosphatidylinositol 3-Kinases metabolism
Phosphoinositide-3 Kinase Inhibitors pharmacology
Proto-Oncogene Proteins c-akt antagonists & inhibitors
Proto-Oncogene Proteins c-akt metabolism
Reactive Oxygen Species antagonists & inhibitors
Reactive Oxygen Species metabolism
Urinary Bladder Neoplasms pathology
Antineoplastic Agents pharmacology
Apoptosis drug effects
Deoxyadenosines pharmacology
Signal Transduction drug effects
Urinary Bladder Neoplasms drug therapy
Subjects
Details
- Language :
- English
- ISSN :
- 1881-7823
- Volume :
- 13
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Bioscience trends
- Publication Type :
- Academic Journal
- Accession number :
- 31527329
- Full Text :
- https://doi.org/10.5582/bst.2019.01214