Back to Search
Start Over
A Case Study Evaluating the Risk of Infection from Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV) in a Hospital Setting Through Bioaerosols.
- Source :
-
Risk analysis : an official publication of the Society for Risk Analysis [Risk Anal] 2019 Dec; Vol. 39 (12), pp. 2608-2624. Date of Electronic Publication: 2019 Sep 16. - Publication Year :
- 2019
-
Abstract
- Middle Eastern respiratory syndrome, an emerging viral infection with a global case fatality rate of 35.5%, caused major outbreaks first in 2012 and 2015, though new cases are continuously reported around the world. Transmission is believed to mainly occur in healthcare settings through aerosolized particles. This study uses Quantitative Microbial Risk Assessment to develop a generalizable model that can assist with interpreting reported outbreak data or predict risk of infection with or without the recommended strategies. The exposure scenario includes a single index patient emitting virus-containing aerosols into the air by coughing, leading to short- and long-range airborne exposures for other patients in the same room, nurses, healthcare workers, and family visitors. Aerosol transport modeling was coupled with Monte Carlo simulation to evaluate the risk of MERS illness for the exposed population. Results from a typical scenario show the daily mean risk of infection to be the highest for the nurses and healthcare workers (8.49 × 10 <superscript>-4</superscript> and 7.91 × 10 <superscript>-4</superscript> , respectively), and the lowest for family visitors and patients staying in the same room (3.12 × 10 <superscript>-4</superscript> and 1.29 × 10 <superscript>-4</superscript> , respectively). Sensitivity analysis indicates that more than 90% of the uncertainty in the risk characterization is due to the viral concentration in saliva. Assessment of risk interventions showed that respiratory masks were found to have a greater effect in reducing the risks for all the groups evaluated (>90% risk reduction), while increasing the air exchange was effective for the other patients in the same room only (up to 58% risk reduction).<br /> (© 2019 Society for Risk Analysis.)
- Subjects :
- Aerosols
Air Microbiology
Computer Simulation
Coronavirus Infections epidemiology
Coronavirus Infections virology
Cross Infection epidemiology
Cross Infection prevention & control
Cross Infection transmission
Disease Outbreaks statistics & numerical data
Health Personnel
Humans
Infectious Disease Transmission, Patient-to-Professional prevention & control
Infectious Disease Transmission, Patient-to-Professional statistics & numerical data
Masks
Monte Carlo Method
Republic of Korea epidemiology
Risk Assessment methods
Risk Assessment statistics & numerical data
Risk Management
Saliva virology
Coronavirus Infections transmission
Middle East Respiratory Syndrome Coronavirus
Models, Biological
Subjects
Details
- Language :
- English
- ISSN :
- 1539-6924
- Volume :
- 39
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Risk analysis : an official publication of the Society for Risk Analysis
- Publication Type :
- Academic Journal
- Accession number :
- 31524301
- Full Text :
- https://doi.org/10.1111/risa.13389