Back to Search Start Over

On-surface synthesis and characterization of individual polyacetylene chains.

Authors :
Wang S
Sun Q
Gröning O
Widmer R
Pignedoli CA
Cai L
Yu X
Yuan B
Li C
Ju H
Zhu J
Ruffieux P
Fasel R
Xu W
Source :
Nature chemistry [Nat Chem] 2019 Oct; Vol. 11 (10), pp. 924-930. Date of Electronic Publication: 2019 Sep 02.
Publication Year :
2019

Abstract

Polyacetylene (PA) comprises one-dimensional chains of sp <superscript>2</superscript> -hybridized carbon atoms that may take a cis or trans configuration. Owing to its simple chemical structure and exceptional electronic properties, PA is an ideal system to understand the nature of charge transport in conducting polymers. Here, we report the on-surface synthesis of both cis- and trans-PA chains and their atomic-scale characterization. The structure of individual PA chains was imaged by non-contact atomic force microscopy, which confirmed the formation of PA by resolving single chemical bond units. Angle-resolved photoemission spectroscopy suggests a semiconductor-to-metal transition through doping-induced suppression of the Peierls bond alternation of trans-PA on Cu(110). Electronically decoupled trans-PAs exhibit a band gap of 2.4 eV following copper oxide intercalation. Our study provides a platform for studying individual PA chains in real and reciprocal space, which may be further extended to study the intrinsic properties of non-linear excitons in conducting polymers.

Details

Language :
English
ISSN :
1755-4349
Volume :
11
Issue :
10
Database :
MEDLINE
Journal :
Nature chemistry
Publication Type :
Academic Journal
Accession number :
31477850
Full Text :
https://doi.org/10.1038/s41557-019-0316-8