Back to Search Start Over

Mechanomyographic Amplitude Is Sensitive to Load-Dependent Neuromuscular Adaptations in Response to Resistance Training.

Authors :
Jenkins NDM
Miramonti AA
Hill EC
Smith CM
Cochrane-Snyman KC
Housh TJ
Cramer JT
Source :
Journal of strength and conditioning research [J Strength Cond Res] 2021 Nov 01; Vol. 35 (11), pp. 3265-3269.
Publication Year :
2021

Abstract

Abstract: Jenkins, NDM, Miramonti, AA, Hill, EC, Smith, CM, Cochrane-Snyman, KC, Housh, TJ, and Cramer, JT. Mechanomyographic amplitude is sensitive to load-dependent neuromuscular adaptations in response to resistance training. J Strength Cond Res 35(11): 3265-3269, 2021-We examined the sensitivity of the mechanomyographic amplitude (MMGRMS) and frequency (MMGMPF) vs. torque relationships to load-dependent neuromuscular adaptations in response to 6 weeks of higher- vs. lower-load resistance training. Twenty-five men (age = 22.8 ± 4.6 years) were randomly assigned to either a high- (n = 13) or low-load (n = 12) training group and completed 6 weeks of leg extension resistance training at 80 or 30% 1RM. Before and after 3 and 6 weeks of training, mechanomyography signals were recorded during isometric contractions at target torques equal to 10-100% of the subjects' baseline maximal strength to quantify MMGRMS and MMGMPF vs. torque relationships. MMGRMS decreased from Baseline to weeks 3 and 6 in the high-load, but not low-load group, and was dependent on the muscle and intensity of contraction examined. Consequently, MMGRMS was generally lower in the high- than low-load group at weeks 3 and 6, and these differences were most apparent in the vastus lateralis (VL) and rectus femoris muscles at higher contraction intensities. MMGMPF was greater in the high- than low-load training group independent of time or muscle. The MMGRMS vs. torque relationship was sensitive to load-dependent, muscle-specific neuromuscular adaptations and suggest reductions in neuromuscular activation to produce the same absolute submaximal torques after training with high, but not low loads.<br /> (Copyright © 2019 National Strength and Conditioning Association.)

Details

Language :
English
ISSN :
1533-4287
Volume :
35
Issue :
11
Database :
MEDLINE
Journal :
Journal of strength and conditioning research
Publication Type :
Academic Journal
Accession number :
31453941
Full Text :
https://doi.org/10.1519/JSC.0000000000003276