Back to Search Start Over

Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content.

Authors :
Wu F
Tian K
Wang J
Bao H
Luo W
Zhang H
Hong H
Source :
Ecotoxicology and environmental safety [Ecotoxicol Environ Saf] 2019 Nov 15; Vol. 183, pp. 109567. Date of Electronic Publication: 2019 Aug 20.
Publication Year :
2019

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are universal organic pollutants in the agro ecosystems in China, therefore, it is important to understand the uptake and accumulation of PAHs in crops growing on PAHs contaminated soils for human health risk assessments. Water management is a common practice to maintain high grain yields during wheat production. However, the effects of soil water content on the accumulation and translocation of PAHs in wheat are still not clear. The main objectives of the present study were to investigate the effects of soil water content on the accumulation of three selected PAHs (Σ <subscript>3</subscript> PAHs, phenanthrene, anthracene and pyrene) in wheat during whole plant growth stage and on translocation or remobilization of Σ <subscript>3</subscript> PAHs from vegetative tissues to wheat grains. Winter wheat (Triticum aestivum cv. Xiaoyan22) were grown on Σ <subscript>3</subscript> PAHs spiked soils maintaining 80%, 60% or 40% water-holding capacity during the whole plant growth stage. Plant samplings were performed at jointing, anthesis or maturity stage, respectively. The present study showed that grain yield and biomass of the crop increased with soil water content increasing. Transpiration rate of wheat leaf under 80% and 60% water-holding capacity treatments was significantly (p < 0.05) higher than that under 40% water-holding capacity treatment at both anthesis and filling stage. Soil water content and plant growth stage had significant (p < 0.0001) effects on concentrations of phenanthrene, anthracene and pyrene in winter wheat. When exposed to 0, 15, 60, and 150 mg kg <superscript>-1</superscript> Σ <subscript>3</subscript> PAHs in soils, Σ <subscript>3</subscript> PAHs concentrations in the grains under 60% water-holding capacity treatment were 46.6%, 69.9%, 89.5% and 81.7% of those under 80% water-holding capacity treatment, respectively. The highest concentrations of Σ <subscript>3</subscript> PAHs in the crop were recorded at anthesis stage. The distribution of PAHs in different tissues of wheat varied among different soil water treatments and plant growth stages. The present study indicated that optimizing soil water content during winter wheat production could apparently reduce concentrations of Σ <subscript>3</subscript> PAHs in grains via influence root uptake of Σ <subscript>3</subscript> PAHs and translocation of Σ <subscript>3</subscript> PAHs from stem or leaf into grain, suggesting the potential of water management to cope with PAHs contamination in crops growing on PAHs contaminated soils.<br /> (Copyright © 2019 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2414
Volume :
183
Database :
MEDLINE
Journal :
Ecotoxicology and environmental safety
Publication Type :
Academic Journal
Accession number :
31442802
Full Text :
https://doi.org/10.1016/j.ecoenv.2019.109567