Back to Search
Start Over
Parsing the Heterogeneity of Brain Metabolic Disturbances in Autism Spectrum Disorder.
- Source :
-
Biological psychiatry [Biol Psychiatry] 2020 Jan 15; Vol. 87 (2), pp. 174-184. Date of Electronic Publication: 2019 Jun 21. - Publication Year :
- 2020
-
Abstract
- Background: Despite rising prevalence of autism spectrum disorder (ASD), its brain bases remain uncertain. Abnormal levels of N-acetyl compounds, glutamate+glutamine, creatine+phosphocreatine, or choline compounds measured by proton magnetic resonance spectroscopy suggest that neuron or glial density, mitochondrial energetic metabolism, and/or inflammation contribute to ASD neuropathology. The neuroanatomic distribution of these metabolites could help evaluate leading theories of ASD. However, most prior magnetic resonance spectroscopy studies had small samples (all <60, most <20), interrogated only a small fraction of the brain, and avoided assessing effects of age, sex, and IQ.<br />Methods: We acquired near-whole-brain magnetic resonance spectroscopy of N-acetyl compounds, glutamate+glutamine, creatine+phosphocreatine, and choline compounds in 78 children and adults with ASD and 96 typically developing children and adults, rigorously evaluating effects of diagnosis and severity on metabolites, as moderated by age, sex, and IQ.<br />Results: Effects of ASD and its severity included reduced levels of multiple metabolites in white matter and the perisylvian cortex and elevated levels in the posterior cingulate, consistent with white matter and social-brain theories of ASD. Regionally, both slower and faster decreases of metabolites with age were observed in ASD versus TD. Male-female metabolite differences were widely smaller in ASD than typically developing children and adults. ASD-specific decreases in metabolites with decreasing IQ occurred in several brain areas.<br />Conclusions: Results support multifocal abnormal neuron or glial density, mitochondrial energetics, or neuroinflammation in ASD, alongside widespread starkly atypical moderating effects of age, sex, and IQ. These findings help parse the neurometabolic signature for ASD by phenotypic heterogeneity.<br /> (Copyright © 2019 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-2402
- Volume :
- 87
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Biological psychiatry
- Publication Type :
- Academic Journal
- Accession number :
- 31427037
- Full Text :
- https://doi.org/10.1016/j.biopsych.2019.06.010