Back to Search
Start Over
Real-time surgical needle detection using region-based convolutional neural networks.
- Source :
-
International journal of computer assisted radiology and surgery [Int J Comput Assist Radiol Surg] 2020 Jan; Vol. 15 (1), pp. 41-47. Date of Electronic Publication: 2019 Aug 17. - Publication Year :
- 2020
-
Abstract
- Objective: Conventional surgical assistance and skill analysis for suturing mostly focus on the motions of the tools. As the quality of the suturing is determined by needle motions relative to the tissues, having knowledge of the needle motion would be useful for surgical assistance and skill analysis. As the first step toward demonstrating the usefulness of the knowledge of the needle motion, we developed a needle detection algorithm.<br />Methods: Owing to the small needle size, attaching sensors to it is difficult. Therefore, we developed a real-time video-based needle detection algorithm using a region-based convolutional neural network.<br />Results: Our method successfully detected the needle with an average precision of 89.2%. The needle was robustly detected even when the needle was heavily occluded by the tools and/or the blood vessels during microvascular anastomosis. However, there were some incorrect detections, including partial detection.<br />Conclusion: To the best of our knowledge, this is the first time deep neural networks have been applied to real-time needle detection. In the future, we will develop a needle pose estimation algorithm using the predicted needle location toward computer-aided surgical assistance and surgical skill analysis.
Details
- Language :
- English
- ISSN :
- 1861-6429
- Volume :
- 15
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- International journal of computer assisted radiology and surgery
- Publication Type :
- Academic Journal
- Accession number :
- 31422553
- Full Text :
- https://doi.org/10.1007/s11548-019-02050-9