Back to Search Start Over

Phosphoproteomic analysis reveals plant DNA damage signalling pathways with a functional role for histone H2AX phosphorylation in plant growth under genotoxic stress.

Authors :
Waterworth WM
Wilson M
Wang D
Nuhse T
Warward S
Selley J
West CE
Source :
The Plant journal : for cell and molecular biology [Plant J] 2019 Dec; Vol. 100 (5), pp. 1007-1021. Date of Electronic Publication: 2019 Sep 10.
Publication Year :
2019

Abstract

DNA damage responses are crucial for plant growth under genotoxic stress. Accumulating evidence indicates that DNA damage responses differ between plant cell types. Here, quantitative shotgun phosphoproteomics provided high-throughput analysis of the DNA damage response network in callus cells. MS analysis revealed a wide network of highly dynamic changes in the phosphoprotein profile of genotoxin-treated cells, largely mediated by the ATAXIA TELANGIECTASIA MUTATED (ATM) protein kinase, representing candidate factors that modulate plant growth, development and DNA repair. A C-terminal dual serine target motif unique to H2AX in the plant lineage showed 171-fold phosphorylation that was absent in atm mutant lines. The physiological significance of post-translational DNA damage signalling to plant growth and survival was demonstrated using reverse genetics and complementation studies of h2ax mutants, establishing the functional role of ATM-mediated histone modification in plant growth under genotoxic stress. Our findings demonstrate the complexity and functional significance of post-translational DNA damage signalling responses in plants and establish the requirement of H2AX phosphorylation for plant survival under genotoxic stress.<br /> (© 2019 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1365-313X
Volume :
100
Issue :
5
Database :
MEDLINE
Journal :
The Plant journal : for cell and molecular biology
Publication Type :
Academic Journal
Accession number :
31410901
Full Text :
https://doi.org/10.1111/tpj.14495