Back to Search Start Over

Two distinct anionic phospholipid-dependent events involved in SecA-mediated protein translocation.

Authors :
Koch S
Exterkate M
López CA
Patro M
Marrink SJ
Driessen AJM
Source :
Biochimica et biophysica acta. Biomembranes [Biochim Biophys Acta Biomembr] 2019 Nov 01; Vol. 1861 (11), pp. 183035. Date of Electronic Publication: 2019 Aug 05.
Publication Year :
2019

Abstract

Protein translocation across the bacterial cytoplasmic membrane is an essential process catalyzed by the Sec translocase, which in its minimal form consists of the protein-conducting channel SecYEG, and the motor ATPase SecA. SecA binds via its positively charged N-terminus to membranes containing anionic phospholipids, leading to a lipid-bound intermediate. This interaction induces a conformational change in SecA, resulting in a high-affinity association with SecYEG, which initiates protein translocation. Here, we examined the effect of anionic lipids on the SecA-SecYEG interaction in more detail, and discovered a second, yet unknown, anionic lipid-dependent event that stimulates protein translocation. Based on molecular dynamics simulations we identified an anionic lipid-enriched region in vicinity of the lateral gate of SecY. Here, the anionic lipid headgroup accesses the lateral gate, thereby stabilizing the pre-open state of the channel. The simulations suggest flip-flop movement of phospholipid along the lateral gate. Electrostatic contribution of the anionic phospholipids at the lateral gate may directly stabilize positively charged residues of the signal sequence of an incoming preprotein. Such a mechanism allows for the correct positioning of the entrant peptide, thereby providing a long-sought explanation for the role of anionic lipids in signal sequence folding during protein translocation.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-2642
Volume :
1861
Issue :
11
Database :
MEDLINE
Journal :
Biochimica et biophysica acta. Biomembranes
Publication Type :
Academic Journal
Accession number :
31394098
Full Text :
https://doi.org/10.1016/j.bbamem.2019.183035