Back to Search
Start Over
Cell Membrane-Coated Magnetic Nanocubes with a Homotypic Targeting Ability Increase Intracellular Temperature due to ROS Scavenging and Act as a Versatile Theranostic System for Glioblastoma Multiforme.
- Source :
-
Advanced healthcare materials [Adv Healthc Mater] 2019 Sep; Vol. 8 (18), pp. e1900612. Date of Electronic Publication: 2019 Aug 07. - Publication Year :
- 2019
-
Abstract
- In this study, hybrid nanocubes composed of magnetite (Fe <subscript>3</subscript> O <subscript>4</subscript> ) and manganese dioxide (MnO <subscript>2</subscript> ), coated with U-251 MG cell-derived membranes (CM-NCubes) are synthesized. The CM-NCubes demonstrate a concentration-dependent oxygen generation (up to 15%), and, for the first time in the literature, an intracellular increase of temperature (6 °C) due to the exothermic scavenging reaction of hydrogen peroxide (H <subscript>2</subscript> O <subscript>2</subscript> ) is showed. Internalization studies demonstrate that the CM-NCubes are internalized much faster and at a higher extent by the homotypic U-251 MG cell line compared to other cerebral cell lines. The ability of the CM-NCubes to cross an in vitro model of the blood-brain barrier is also assessed. The CM-NCubes show the ability to respond to a static magnet and to accumulate in cells even under flowing conditions. Moreover, it is demonstrated that 500 µg mL <superscript>-1</superscript> of sorafenib-loaded or unloaded CM-NCubes are able to induce cell death by apoptosis in U-251 MG spheroids that are used as a tumor model, after their exposure to an alternating magnetic field (AMF). Finally, it is shown that the combination of sorafenib and AMF induces a higher enzymatic activity of caspase 3 and caspase 9, probably due to an increment in reactive oxygen species by means of hyperthermia.<br /> (© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Subjects :
- Apoptosis
Blood-Brain Barrier pathology
Cell Line, Tumor
Drug Liberation
Dynamic Light Scattering
Endocytosis
Fluorescence
Glioblastoma pathology
Humans
Hyperthermia, Induced
Magnetite Nanoparticles ultrastructure
Oxygen metabolism
Protein Corona
Cell Membrane metabolism
Glioblastoma diagnosis
Glioblastoma therapy
Magnetite Nanoparticles chemistry
Reactive Oxygen Species metabolism
Temperature
Theranostic Nanomedicine
Subjects
Details
- Language :
- English
- ISSN :
- 2192-2659
- Volume :
- 8
- Issue :
- 18
- Database :
- MEDLINE
- Journal :
- Advanced healthcare materials
- Publication Type :
- Academic Journal
- Accession number :
- 31389193
- Full Text :
- https://doi.org/10.1002/adhm.201900612