Back to Search
Start Over
Dissecting the prevention of estrogen-dependent breast carcinogenesis through Nrf2-dependent and independent mechanisms.
- Source :
-
OncoTargets and therapy [Onco Targets Ther] 2019 Jun 24; Vol. 12, pp. 4937-4953. Date of Electronic Publication: 2019 Jun 24 (Print Publication: 2019). - Publication Year :
- 2019
-
Abstract
- Breast cancer is the most common malignancy among women worldwide. Various studies indicate that prolonged exposure to elevated levels of estrogens is associated with development of breast cancer. Both estrogen receptor-dependent and independent mechanisms can contribute to the carcinogenic effects of estrogens. Among them, the oxidative metabolism of estrogens plays a key role in the initiation of estradiol-induced breast cancer by generation of reactive estrogen quinones as well as the associated formation of oxygen free radicals. These genotoxic metabolites can react with DNA to form unstable DNA adducts which generate mutations leading to the initiation of breast cancer. A variety of endogenous and exogenous factors can alter estrogen homeostasis and generate genotoxic metabolites. The use of specific phytochemicals and dietary supplements can inhibit the risk of breast cancer not only by the modulation of several estrogen-activating enzymes (CYP19, CYP1B1) but also through the induction of various cytoprotective enzymes (eg, SOD3, NQO1, glutathione S-transferases, OGG-1, catechol- O -methyltransferases, CYP1B1A, etc.) that reestablish the homeostatic balance of estrogen metabolism via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent and independent mechanisms.<br />Competing Interests: The authors report no conflicts of interest in this work.
Details
- Language :
- English
- ISSN :
- 1178-6930
- Volume :
- 12
- Database :
- MEDLINE
- Journal :
- OncoTargets and therapy
- Publication Type :
- Academic Journal
- Accession number :
- 31388303
- Full Text :
- https://doi.org/10.2147/OTT.S183192