Back to Search Start Over

Polycyclic Aromatic Hydrocarbons Can Trigger Hepatocyte Release of Extracellular Vesicles by Various Mechanisms of Action Depending on Their Affinity for the Aryl Hydrocarbon Receptor.

Authors :
van Meteren N
Lagadic-Gossmann D
Chevanne M
Gallais I
Gobart D
Burel A
Bucher S
Grova N
Fromenty B
Appenzeller BMR
Chevance S
Gauffre F
Le Ferrec E
Sergent O
Source :
Toxicological sciences : an official journal of the Society of Toxicology [Toxicol Sci] 2019 Oct 01; Vol. 171 (2), pp. 443-462.
Publication Year :
2019

Abstract

Extracellular vesicles (EVs) are membrane-enclosed nanostructures released by cells into the extracellular environment. As major actors of physiological intercellular communication, they have been shown to be pathogenic mediators of several liver diseases. Extracellular vesicles also appear to be potential actors of drug-induced liver injury but nothing is known concerning environmental pollutants. We aimed to study the impact of polycyclic aromatic hydrocarbons (PAHs), major contaminants, on hepatocyte-derived EV production, with a special focus on hepatocyte death. Three PAHs were selected, based on their presence in food and their affinity for the aryl hydrocarbon receptor (AhR): benzo[a]pyrene (BP), dibenzo[a,h]anthracene (DBA), and pyrene (PYR). Treatment of primary rat and WIF-B9 hepatocytes by all 3 PAHs increased the release of EVs, mainly comprised of exosomes, in parallel with modifying exosome protein marker expression and inducing apoptosis. Moreover, PAH treatment of rodents for 3 months also led to increased EV levels in plasma. The EV release involved CYP metabolism and the activation of the transcription factor, the AhR, for BP and DBA and another transcription factor, the constitutive androstane receptor, for PYR. Furthermore, all PAHs increased cholesterol levels in EVs but only BP and DBA were able to reduce the cholesterol content of total cell membranes. All cholesterol changes very likely participated in the increase in EV release and cell death. Finally, we studied changes in cell membrane fluidity caused by BP and DBA due to cholesterol depletion. Our data showed increased cell membrane fluidity, which contributed to hepatocyte EV release and cell death.<br /> (© The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1096-0929
Volume :
171
Issue :
2
Database :
MEDLINE
Journal :
Toxicological sciences : an official journal of the Society of Toxicology
Publication Type :
Academic Journal
Accession number :
31368503
Full Text :
https://doi.org/10.1093/toxsci/kfz157