Back to Search
Start Over
Effects of supplemental butyrate and weaning on rumen fermentation in Holstein calves.
- Source :
-
Journal of dairy science [J Dairy Sci] 2019 Oct; Vol. 102 (10), pp. 8874-8882. Date of Electronic Publication: 2019 Jul 24. - Publication Year :
- 2019
-
Abstract
- The objectives of this study were to determine the effects of the weaning transition and supplemental rumen-protected butyrate on subacute ruminal acidosis, feed intake, and growth parameters. Holstein bull calves (n = 36; age = 10.7 ± 4.1 d; ± standard deviation) were assigned to 1 of 4 treatment groups: 2 preweaning groups, animals fed milk replacer only (PRE-M) and those fed milk replacer, calf starter, and hay (PRE-S); and 2 postweaning groups, animals fed milk replacer, calf starter, and hay without supplemental rumen-protected butyrate (POST-S) or with supplemental rumen-protected butyrate at a rate of 1% wt/wt during the 2-wk weaning transition (POST-B). Milk replacer was provided at 1,200 g/d; starter, water, and hay were provided ad libitum. Weaning took place over 14 d by reducing milk replacer provision to 900 g/d in wk 7, 600 g/d in wk 8, and 0 g/d in wk 9. Rumen pH was measured continuously for 7 d during wk 6 for PRE-S and PRE-M and during wk 9 for POST-S and POST-B. After rumen pH was measured for 7 d, calves were euthanized, and rumen fluid was sampled and analyzed for volatile fatty acid (VFA) profile. Individual feed intake was recorded daily, whereas, weekly, body weights were recorded, and blood samples were collected. Compared with PRE-M, PRE-S calves tended to have a greater total VFA concentration (35.60 ± 11.4 vs. 11.90 ± 11.8 mM) but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.17 ± 0.21, respectively). Between PRE-S (wk 6) and POST-S (wk 9), calf starter intake increased (250 ± 219 vs. 2,239 ± 219 g/d), total VFA concentrations increased (35.6 ± 11.4 vs. 154.4 ± 11.8 mM), but mean rumen pH was unaffected (6.25 ± 0.22 vs. 6.40 ± 0.22, respectively). Compared with POST-S, POST-B calves had greater starter intake in wk 7, 8, and 9, but POST-B tended to have lower total VFA concentration (131.0 ± 11.8 vs. 154.4 ± 11.8 mM) and lower mean ruminal pH (5.83 ± 0.21 vs. 6.40 ± 0.22). In conclusion, the weaning transition does not appear to affect rumen pH and VFA profile, but supplementing rumen-protected butyrate during the weaning transition increased starter intake and average daily gain. Further, these data suggest that the ability of the rumen to manage rumen pH changes fundamentally postweaning. Why weaned calves with lower rumen pH can achieve higher calf starter intakes is unclear; these data suggest the effect of rumen pH on feed intake differs between calves and cows.<br /> (Copyright © 2019 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1525-3198
- Volume :
- 102
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Journal of dairy science
- Publication Type :
- Academic Journal
- Accession number :
- 31351719
- Full Text :
- https://doi.org/10.3168/jds.2019-16652