Back to Search Start Over

Prediction of ATP-binding sites in membrane proteins using a two-dimensional convolutional neural network.

Prediction of ATP-binding sites in membrane proteins using a two-dimensional convolutional neural network.

Authors :
Nguyen TT
Le NQ
Kusuma RMI
Ou YY
Source :
Journal of molecular graphics & modelling [J Mol Graph Model] 2019 Nov; Vol. 92, pp. 86-93. Date of Electronic Publication: 2019 Jul 15.
Publication Year :
2019

Abstract

Membrane proteins, the most important drug targets, account for around 30% of total proteins encoded by the genome of living organisms. An important role of these proteins is to bind adenosine triphosphate (ATP), facilitating crucial biological processes such as metabolism and cell signaling. There are several reports elucidating ATP-binding sites within proteins. However, such studies on membrane proteins are limited. Our prediction tool, DeepATP, combines evolutionary information in the form of Position Specific Scoring Matrix and two-dimensional Convolutional Neural Network to predict ATP-binding sites in membrane proteins with an MCC of 0.89 and an AUC of 99%. Compared to recently published ATP-binding site predictors and classifiers that use traditional machine learning algorithms, our approach performs significantly better. We suggest this method as a reliable tool for biologists for ATP-binding site prediction in membrane proteins.<br /> (Copyright © 2019 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1873-4243
Volume :
92
Database :
MEDLINE
Journal :
Journal of molecular graphics & modelling
Publication Type :
Academic Journal
Accession number :
31344547
Full Text :
https://doi.org/10.1016/j.jmgm.2019.07.003