Back to Search Start Over

Drugging an undruggable pocket on KRAS.

Authors :
Kessler D
Gmachl M
Mantoulidis A
Martin LJ
Zoephel A
Mayer M
Gollner A
Covini D
Fischer S
Gerstberger T
Gmaschitz T
Goodwin C
Greb P
Häring D
Hela W
Hoffmann J
Karolyi-Oezguer J
Knesl P
Kornigg S
Koegl M
Kousek R
Lamarre L
Moser F
Munico-Martinez S
Peinsipp C
Phan J
Rinnenthal J
Sai J
Salamon C
Scherbantin Y
Schipany K
Schnitzer R
Schrenk A
Sharps B
Siszler G
Sun Q
Waterson A
Wolkerstorfer B
Zeeb M
Pearson M
Fesik SW
McConnell DB
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2019 Aug 06; Vol. 116 (32), pp. 15823-15829. Date of Electronic Publication: 2019 Jul 22.
Publication Year :
2019

Abstract

The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be "undruggable," between switch I and II on RAS; 1 is mechanistically distinct from covalent KRAS <superscript>G12C</superscript> inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.<br />Competing Interests: Conflict of interest statement: D.K., M.G., A.M., L.J.M., A.Z., M.M., A.G., D.C., S.F., T. Gerstberger, T. Gmashitz, P.G., D.H., W.H., J.H., J.K.-O., P.K., S.K., M.K., R.K., L.L., F.M., S.M.-M., C.P., J.R., C.S., Y.S., K.S., R.S., A.S., B.S., G.S., B.W., M.Z., M.P., and D.B.M. were employees of Boehringer Ingelheim at the time of this work.<br /> (Copyright © 2019 the Author(s). Published by PNAS.)

Details

Language :
English
ISSN :
1091-6490
Volume :
116
Issue :
32
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
31332011
Full Text :
https://doi.org/10.1073/pnas.1904529116