Back to Search
Start Over
Artificial neural networks accurately predict intra-abdominal infection in moderately severe and severe acute pancreatitis.
- Source :
-
Journal of digestive diseases [J Dig Dis] 2019 Sep; Vol. 20 (9), pp. 486-494. Date of Electronic Publication: 2019 Jul 21. - Publication Year :
- 2019
-
Abstract
- Objective: The aim of this study was to evaluate the efficacy of artificial neural networks (ANN) in predicting intra-abdominal infection in moderately severe (MASP) and severe acute pancreatitis (SAP) compared with that of a logistic regression model (LRM).<br />Methods: Patients suffering from MSAP or SAP from July 2014 to June 2017 in three affiliated hospitals of the Army Medical University in Chongqing, China, were enrolled in this study. A univariate analysis was used to determine the different parameters between patients with and without intra-abdominal infection. Subsequently, these parameters were used to build LRM and ANN.<br />Results: Altogether 263 patients with MSAP or SAP were enrolled in this retrospective study. A total of 16 parameters that differed between patients with and without intra-abdominal infection were used to construct both models. The sensitivity of ANN and LRM was 80.99% (95% confidence interval [CI] 72.63-87.33) and 70.25% (95% CI 61.15-78.04), respectively (P > 0.05), whereas the specificity was 89.44% (95% CI 82.89-93.77) and 77.46% (95% CI 69.54-83.87), respectively (P < 0.05). ANN predicted the risk of intra-abdominal infection better than LRM (area under the receiver operating characteristic curve: 0.923 [0.883-0.952] vs 0.802 [0.749-0.849], P < 0.001).<br />Conclusions: ANN accurately predicted intra-abdominal infection in MSAP and SAP and is an ideal tool for predicting intra-abdominal infection in such patients. Coagulation parameters played an important role in such prediction.<br /> (© 2019 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.)
Details
- Language :
- English
- ISSN :
- 1751-2980
- Volume :
- 20
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Journal of digestive diseases
- Publication Type :
- Academic Journal
- Accession number :
- 31328389
- Full Text :
- https://doi.org/10.1111/1751-2980.12796