Back to Search Start Over

Environmentally relevant exposure to dibutyl phthalate disrupts DNA damage repair gene expression in the mouse ovary†.

Authors :
Liu X
Craig ZR
Source :
Biology of reproduction [Biol Reprod] 2019 Oct 25; Vol. 101 (4), pp. 854-867.
Publication Year :
2019

Abstract

Phthalates have a history of reproductive toxicity in animal models and associations with adverse reproductive outcomes in women. Human exposure to dibutyl phthalate (DBP) occurs via consumer products (7-10 μg/kg/day) and medications (1-233 μg/kg/day). Most DBP toxicity studies have focused on high supraphysiological exposure levels; thus, very little is known about exposures occurring at environmentally relevant levels. CD-1 female mice (80 days old) were treated with tocopherol-stripped corn oil (vehicle control) or DBP dissolved in oil at environmentally relevant (10 and 100 μg/kg/day) or higher (1000 μg/kg/day) levels for 30 days to evaluate effects on DNA damage response (DDR) pathway genes and folliculogenesis. DBP exposure caused dose-dependent effects on folliculogenesis and gene expression. Specifically, animals exposed to the high dose of DBP had more atretic follicles in their ovaries, while in those treated with environmentally relevant doses, follicle numbers were no different from vehicle-treated controls. DBP exposure significantly reduced the expression of DDR genes including those involved in homologous recombination (Atm, Brca1, Mre11a, Rad50), mismatch repair (Msh3, Msh6), and nucleotide excision repair (Xpc, Pcna) in a dose-specific manner. Interestingly, staining for the DNA damage marker, γH2AX, was similar between treatments. DBP exposure did not result in differential DNA methylation in the Brca1 promoter but significantly reduced transcript levels for the maintenance DNA methyltransferase, Dnmt1, in the ovary. Collectively, these findings show that oral exposure to environmentally relevant levels of DBP for 30 days does not significantly impact folliculogenesis in adult mice but leads to aberrant ovarian expression of DDR genes.<br /> (© The Author(s) 2019. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1529-7268
Volume :
101
Issue :
4
Database :
MEDLINE
Journal :
Biology of reproduction
Publication Type :
Academic Journal
Accession number :
31318015
Full Text :
https://doi.org/10.1093/biolre/ioz122